MATHEMATICS
IN SCIENCE
AND
ENGINEERING

votme? B NON-LINEAR WAVE
PROPAGATION

With Applications to Physics and Magnetohydrodynamics

A. JEFFREY T. TANIUTI

D

ACADEMIC PRESS




MATHEMATICS IN
SCIENCE AND ENGINEERING

A Series of Monographs and Textbooks

Edited by

Richard Bellman
The RAND Corporation, Santa Monica, California

Volume 1. TrACY Y. THOMAs. Concepts from Tensor Analysis and
Differential Geometry. 1961

Volume 2.  TRAcY Y. THoMas. Plastic Flow and Fracture in Solids. 1961

Volume 3. RUTHERFORD ARIs. The Optimal Design of Chemical Reac-
tors: A Study in Dynamic Programming. 1961

Volume 4.  JosePH LA SALLE and SOLOMON LEFSCHETZz. Stability by
Liapunov’s Direct Method with Applications. 1961

Volume 5. GEORGE LEITMANN (ed.). Optimization Techniques: with
Applications to Aerospace Systems. 1962

Volume 6.  RicHARD BELLMAN and KENNETH L. CookE. Differential-
Difference Equations. 1963

Volume 7. FRANK A. HAIGHT. Mathematical Theories of Traffic Flow.
1963

Volume 8. F. V. ATKINsON. Discrete and Continuous Boundary
Problems. 1964

Volume 9. A. JEFFREY and T. TANIUTI. Non-Linear Wave Propagation:
with Applications to Physics and Magnetohydrodynamics.
1964

Volume 10.  JuLius Tou. Optimum Design of Digital Control Systems.
1963

Volume 11. HARLEY FLANDERs. Differential Forms: with Applications
to the Physical Sciences. 1963

Volume 12.  SANFORD M. ROBERTs. Dynamic Programming in Chemical
Engineering and Process Control. 1964

In Eregaration

D. N. CHORAFASs. Systems and Simulations



NON-LINEAR WAVE
PROPAGATION

With Applications to Physics and Magnetohydrodynamics

A. JEFFREY T. TANIUTI
Rolls-Royce, Ltd. Institute of Plasma Physics
Littleover, Derby, England Nagoya University

Nagoya, Japan

1964

@ New York ACADEMIC PRESS London



CopyricHT © 1964, BY AcapEMIC PRrEss Inc.
ALL RIGHTS RESERVED.
NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM,
BY PHOTOSTAT, MICROFILM, OR ANY OTHER MEANS, WITHOUT
WRITTEN PERMISSION FROM THE PUBLISHERS.

ACADEMIC PRESS INC.
111 Fifth Avenue, New York 3, New York

United Kingdom Edition published by

ACADEMIC PRESS INC. (LONDON) LTD.
Berkeley Square House, London W.1

LiBrARY OoF CONGRESS CATALOG CARD NUMBER: 63-16964

PRINTED IN THE UNITED STATES OF AMERICA



Preface

This book represents an attempt to present the basic mathematics
of non-linear wave propagation in a systematic manner and to
display it against the background of modern theoretical physics.
In Part I of the book, basic ideas are developed and examples from
several branches of physics are used to illustrate the application of
these ideas in diverse situations. It is hoped that in this manner the
power of these methods may be indicated more directly and appli-
cation to other branches encouraged. Part IT of the book is a study
of those topics of magnetohydrodynamics which permit exact
analysis 'making use of these methods.

Of the new disciplines to emerge during the last decade or so,
magnetohydrodynamics is perhaps unique in that it has played so
important a part in shaping the recent development of methods for
the analysis of non-linear wave propagation. There are several
reasons for this but among the most important ones must certainly
be the extreme interest and novelty of the associated mathematical
problems, the universal interest in potential applications, and the
fact that intuition is of little value to the average worker in the
field. In writing about magnetohydrodynamics we have tried to
show specifically, and in considerable detail, how the basic mathe-
matical techniques of the first part may be used. To keep within
the spirit of the first part of the book, it has been necessary to
restrict our study to basic magnetohydrodynamics and to avoid
further approximation and the more general topic of plasma physics.
In writing this book we have drawn freely on the published material
of many workers and, whenever possible, we have indicated the
original source of the material used. Our bibliography, although
representative, makes no claim to completeness—rather, it is a
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vi PREFACE

selection of the many references consulted by us during writing and
found to be directly useful.

During the preparation of this book we have benefited from
discussions with many of our colleagues, and we take this opportunity
to express our gratitude to them all. In particular, we would thank
Dr. C. S. Gardner and Dr. E. Bazer for their advice given so gener-
ously during the writing of Part IT of our book. To our hosts and
colleagues at the Courant Institute, New York University, special
thanks are due for their hospitality and help during our stay in
1960-1961 which was appreciated so much by both of us. We
hasten to add that though they have resulted either directly or
indirectly in much that is good in this book they have in no way
contributed to its defects.

Finally, we wish to express our thanks to Academic Press for their
patience, help, and encouragement to us across half the globe, and
to the staff of the printers for their painstaking and excellent work
with a difficult manuscript.

ALAN JEFFREY
Tosrya TaniuTI
August 1963
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THEORY







GENERAL HYPERBOLIC
EQUATIONS

1.1. THE WaAVE anD HypERBoLIC EQUATIONS

LET US BEGIN our study of non-linear wave motion by first considering
a simple and familiar example which will serve to introduce the basic
idea of a wave and many of the important properties of wave equa-
tions. The equation we use for this purpose is the second order partial
differential equation for a real function = u(z, t) of the two indepen-
dent variables x and ¢:

AUy +buy+cuy+f = 0. (L.1.1)

In general, this equation will be non-linear, but from amongst the
class of non-linear equations it is possible to distinguish a number of
subclasses about which much is known and which contain many of
the non-linear equations of physics. When an equation such as (1.1.1)
is linear with respect to the highest derivatives u,,, u,, and u, it is
called quasi-linear. If a, b, and ¢ are functions of « and ¢ only, it is
called semi-linear, and if, moreover, f is a linear function of » and its
derivatives, the equation is called linear.

We will now investigate the conditions under which equation
(1.1.1) represents a wave. The notion of waves has been used
ambiguously in the various branches of physics and so let us define
at the outset the type of wave we shall study in this work. In what
follows we define the “wave’ as the disturbance propagating itself
into a state in which all the field quantities are constant in time.¥

For simplicity we assume that a, b, and ¢ are functions of u, u,,
and u, only and do not depend on x and ¢. Equation (1.1.1) then
admits a solution of constant state subject to the condition

f(u) =0,

t This definition implies that the medium through which the wave
propagates extends to infinity in the direction of propagation or, if there is
a boundary, that the transient process before the wave reaches the boundary
should be considered.

3



4 1 ¢ GENERAL HYPERBOLIC EQUATIONS

and we may consider the wave propagating itself into the above
constant state. (In the case that f=0, u is an arbitrary constant,
say u,.) We denote this constant state by (I). The wave, as defined
above, implies the existence of the wave front, the clearly defined
boundary between the disturbed state and the undisturbed state (I)
which may be specified in functional form as

o@,t)=0. (1.1.2)

In the constant state (I), any derivative of u vanishes, whilst in
the disturbed state, derivatives of « do not in general vanish and
thus there exists some discontinuity across the wave front (1.1.2).
We assume that the wave is smooth so that » and its first order
derivatives u,, u, are continuous across the wave front and that the
second order derivatives have a jump in crossing the wave front. As
will be shown later, in quasi-linear equations, smooth solutions do
not necessarily exist for all time; after a finite time a smooth solution
may cease to be smooth and later on tend to a discontinuity which
behaves quite differently from the smooth wave. The present discus-
sion must be restricted to a finite interval over which the smooth
wave remains smooth.

In the neighbourhood of the wave front let us introduce curvilinear
coordinates through the equations,

o(z,t) = constant
Y(x,t) = constant

in which the wave front ¢ = 0 is embedded.

In the subsequent discussion we assume that all the first and the
second order derivatives of ¢ and ¢ with respect to x and ¢ are con-
tinuous across the wave front and that the transformations from the
Cartesian coordinate system to the curvilinear coordinate system are
in one-to-one correspondence. Of course this does not uniquely
determine the functional form of ¢ and . If the wave front is a
straight line one possible choice of the coordinate ¢ = constant
may be the family of straight lines parallel to the wave front and
¢ = constant may be specified by a family of straight lines crossing
the wave front. In terms of these new coordinates, equation (1.1.1)
may be transformed to the form

(P, ) Upp + 2Q(p, ) Upy + Qb ) gy + Lip] uy + L] uy +f (=1 (1) )
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where
Qp,¥) = apy .+ 3b(p. b+ @ibs) + cp iy
and
o 2 o2
Leagstby st oo

Since the discontinuity appears in crossing the wave front we may
assume that the second order derivative in the direction across the
wave front is discontinuous whilst those in the direction along the
wave front are continuous, i.e.,

[py] = [uyy] = [uyy,] =...= 0

where [ ] denotes the jump across ¢ = 0. Now consider equation
(1.1.1") at points P, and P,, one on each
side of and near to a point P on the wave
front ¢ = 0. Subtract these equations from
each other and then let P, and P, approach
P as in Fig. 1.1a. Then, according to the
above assumption, we obtain the equation

Q(¢7 gp) =0,
or Fi1c. 1.1. (a).

apd+bp,p+opf =0 (1.1.3)

in order that u,, be discontinuous across ¢ = 0. We may note that
although it has been assumed that the discontinuity occurs in u
should the discontinuity. occur in a higher derivative, say, u,,,
Uyppe» Uhe same result still follows as may be readily established.

We may thus conclude that equation (1.1.1) represents a wave
only if a real function ¢ exists satisfying equation (1.1.3). A real
solution exists if

(2744
or

b2—4ac>0

when ¢(z,t), as a solution of equation (1.1.3), determines the wave
front or, more precisely, the gradient of the line ¢(x,¢) = 0 is equal
to the velocity of the wave front. The velocity dxz/dt may be deter-
mined from equation (1.1.3) by noting that since ¢(x,t) = 0 we have
@, dx+@,dy = 0 and so

cdx®—bdxdt+adt? =0, (1.1.3")

—x 2i{b+«/b2 4ac) (1.1.4)

dt

and hence
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which completely determines the trace of the wave front in the (x,)-
space if the initial state is specified. For waves moving in the direc-
tion of the positive x-axis, the larger value of the right-hand side of
equation (1.1.4) gives the appropriate velocity. It should again be
emphasised that in non-linear equations the velocity of the wave
front given by equation (1.1.4) is valid only for the smooth wave; a
finite discontinuity advances with a different speed. Since, as has
already been pointed out, the smooth wave may tend to a disconti-
nuity after a finite time, the result just obtained is only appropriate
for a finite time interval which is undetermined as yet.

It should be noted that equation (1.1.4) depends only on the
coefficients of the highest derivatives of equation (1.1.1) and is
independent of f. Since it was assumed that a, b, and ¢ are indepen-
dent of « and ¢ explicitly and, in equation (1.1.4), these functions are
equal in value to those in the constant state (I), the velocity of the
wave front is constant and the line ¢(x,f) = 0 is a straight line.
However, unlike linear theory, the constant value of the wave front
velocity is different if the constant state ahead is different; namely,
it is not determined a prior: but depends on the initial or boundary
conditions. It is at once obvious that so far as wave front velocity is
concerned, linear and semi-linear equations are the same.

The above result is of course valid for coefficients a, b, and ¢
explicitly dependent on = and in that case the velocity of the wave
front is of course not constant. The extension of the other results
to such a case is obvious.

The equation (1.1.1) is called hyperbolic, parabolic, or elliptic
according as b% — 4ac is positive, zero, or negative. If the discriminant
b%—4ac is indefinite and changes sign across some curve, then the
equation is said to be of a mixed type.

An equation of mixed type is the following:

YUz + Uy, =f (1.1.5)

which, for f=0, becomes the well-known T'ricoms equation of transonic
gas flow (I). For equation (1.1.5), the equation (1.1.3) takes the
form

ypi+: =0, (1.1.6)

which when integrated gives

x=2x,+3(—y)k. (1.1.7)
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Clearly then, when >0 the solutions of equation (1.1.7) are
imaginary and equation (1.1.5) is elliptic, whereas when y <0 the
solutions are real and the equation is hyperbolic and thus a complica-
tion occurs in seeking solutions which extend across the z-axis.

We have thus illustrated that the equation should be hyperbolic if
it is to represent a wave subject to some initial conditions.

Apart from the consideration appropriate to the wave front, we
can introduce the two families of curves through equation (1.1.4).
These curves will be called characteristic curves; the wave front must
be one of the characteristic curves. If we denote these two
characteristic families by

o(z,t) = constant
Y(z,t) = constant,
they of course satisfy the equations
Qp,p) =0
Qi) =0,

which will be called the characteristic equations.

If, moreover, we specify the curvilinear coordinates so far intro-
duced in such a way that they coincide with the characteristic curves,
then equation (1.1.1’) is brought into the form

Ugy + F (g, uy, 0, 0,40) = 0 (1.1.1)

which is called the normal form of the second order hyperbolic
equation for two independent variables. However, it should be
noted that the transformation to the characteristic coordinate system
is not necessarily non-singular. In fact, as will be shown later in
discussing simple waves, it can happen that the characteristic curves
belonging to the same family cross each other after which solutions
become discontinuous.

Namely, for non-linear equations, the normal form (1.1.1”) does
not in general have a global meaning being valid only in the small.

Now consider the wave propagation resulting from initial conditions
specified as follows. At¢ = 0 the disturbance is localised on the centre
interval of the z-axis defined by |z| <a and outside of which » and w,
are constant. The trace of the wave front in the (z,¢)-space is then
given by two straight lines with slopes given by equation (1.1.4)
issuing out of the points x = @ and = —a on the initial line ¢ = 0.
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¢

////

Range of influence
of pcint @

\

-a 0 @ a z

(b)
R
R
P
Range of influence
of point 0
B 0 A z
(©) Domain of dependence
of point P

F1c. 1.1. (b) The range of influence of a point Q. Undisturbed states are
constant states. (c) The range of influence of a point source and the domain
of dependence of a point P. Undisturbed states are constant states.
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Consequently, it can be seen immediately that the disturbance is
localised within the domain bounded by the two characteristics
issuing out of the points (a,0), (—a,0). In the limit as a0 this
domain shrinks to an angular region R which is called the range of
influence of the point O indicating that the disturbance emerges from
the point source with finite speed.

The range of influence of a point can be defined in more general
terms as the totality of points in the (x,¢)-plane which are connected
with that point via the disturbance or, more clearly, the region
bounded by the two characteristics emerging in the positive time sense
from that point. For instance, in Figs. 1.1b,c the range of influence
of @ is the shaded region Ry. It should be noted that the character-
istics depend on u through a, b, and ¢, and so for non-linear equations
they cannot be constructed unless the solution to the equation is
known. Conversely, the points on the initial line f = 0 connected
through the disturbance with a point P, say, would be on the portion
AB intercepted on the z-axis by the two characteristics passing
through P; namely, the solution at P is dependent only on the initial
data on AB which is called the domain of dependence of P.

1.2. Tue CaucHY PROBLEM AND
CHARACTERISTICS

We begin with the simple equation introduced in the previous
section:
aug,+buy+cuy+f=0 (1.2.1)

where now a, b, and ¢ can depend also on z and ¢, and consider the
problem of obtaining a solution « when initial data are specified along
some smooth curve I'.

We saw in Section 1.1 that by changing to the curvilinear
coordinates (¢,y) and provided the Jacobian of the transformation
is non-zero that equation (1.2.1) could be re-written as

Q(e, P) Upy +2Q(@, ) Upy + Qb ) Uy, + L{p] uy, + L[] u, +f = 0.
(1.1.1")

A possible form of solution would be a power series expansion about
some point of I', which may be identified with ¢ = constant, and for
the determination of its coefficients it would be necessary that all the
higher derivatives of » with respect to ¢ and ¢ could be determined
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from the initial conditions along I' and the transformed equation
(1.1.1") itself. If u, u,, and w, were to be specified consistently along
I' as a function of i, then the derivatives w,, and w,, could be
obtained at once by differentiation and u,, would then be determined
by equation (1.1.1’) provided @(p, 9)#0. Thus, again the equation

Qp,p) =0

appears determining the characteristics, but this time as a result of
our attempt to seek an analytic solution in the form of a power series,
when the curves determined by Q(¢,¢) = 0 are seen to be curves
across which we cannot find our power series solution. We now
pursue this discussion in rather more detail starting again from
equation (1.2.1). Let the curve I' be specified by the parametric
representation x = x(g), ¢ =t(c) where o is arc length along T
measured from some fixed point O. If a solution is to be obtained in
the form of a power series it must be possible to compute all the
higher order derivatives of u from equation (1.2.1) and the initial data
prescribed on I'. We note here that since the higher order derivatives
will be obtained by means of differentiation of the initial data, it is
necessary at this stage to require that the initial data be analytic.
Since the equation is of the second order, it would, at first sight,
appear reasonable that u, u,, and u, be specified along I' and used,
in conjunction with equation (1.2.1), to determine the second and
higher order derivatives. To explore this further, we note that the
directional derivative of a function ¢ in the direction of the vector vv
where v is the unit vector is

43
2=y. 1.2.2
2=V V¢, ( )
and thus setting £ = » in identity (1.2.2) we see that if v is a tangent
vector o to I', then the directional derivative becomes equal to
differentiation with respect to the line element o and so

ou Oudx Oudt

4o~ dwde " G do’
which shows clearly that u, u,, and u, are not independent, thus the
suggested initial conditions are too severe. Weaker conditions must
consequently be chosen for the initial data but in such a form that
they enable the derivatives u, and u, to be determined. These condi-
tions are the specification of the functional value » and its normal

(1.2.3)
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derivative with respect to I, du/dn, along the curve I' where the unit
normal n is oriented in the direction of increasing time. That these
conditions are appropriate is easily seen as follows by attempting to
solve them for u, and u,. Setting £ = u in identity (1.2.2) and orient-
ing v in the direction of the normal n to the curve I' we obtain the
equation

ou oudt Oudx

= dedo B do (12:4)

Equations (1.2.3) and (1.2.4) may always be solved for u, and u,
since the determinant A’ of the system of equations is

i @
do do dx\2  (dt\2

e EE g
do do |

and, since o is arc length, do? = da? + d¢? and thus A’ =1 whence the
equations always possess a solution:
ou oOudx Oudt

0x  dods Ondo
(1.2.5)

Oou Oudl Oudx

%~ Fodo Onde
Thus, from the functional value and normal derivative specified
along T, it is always possible to determine «, and »,, We may thus
assume u, and %, to be known and seek to use them, with equation
(1.2.2), to determine the second order derivatives. Using equation
(1.2.2) and setting v = o, the tangent to I', we differentiate u, and «,
respectively, along I' to obtain

d (ouw\ Pudx *u di
do (B—x) = %t do ' Gwdt do

and (1.2.6)
d (ou) 0%u dx  OPudt

do (ﬁ) T it do o do

Equations (1.2.6) together with equation (1.2.1) form a system of

equations determining 02u/ox?, 02u/0x ot, and ¢2u/dt? provided that
the determinant A associated with the equations is non-vanishing,
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where
dx dt
do do °
A=| , de dt | (1.2.7)
do do
a b ¢

Thus, the non-vanishing of

= o) of) (%) ol 029

is seen to be the condition for the determination of the derivatives
Uy Uy and uy,, respectively, and hence also for higher derivatives.
If A0 these quantities enable the determination of all the higher
order derivatives needed for the construction of the power series.
Accordingly, the characteristic equation

o2 o{2) (%) ) = 029

defines a set of characteristic curves with the property that if the
initial data are specified along a characteristic curve the higher order
derivatives are indeterminate and an infinitesimal discontinuity can
occur across such a curve. As was remarked in Section 1.1, for non-
linear equations, a, b, and ¢ are functions of the solution » and the
non-characteristic nature of an arbitrary curve I' may only be
enforced locally, or in the small, with respect to I'. For real charac-
teristic directions which are necessary for waves as defined in
Section 1.1, the hyperbolic condition

bt —4ac>0
is again obtained.

That a power series solution obtained in this manner converges
and uniquely determines a solution to the original problem has not
been established here but the proof is readily available in standard
reference works (2,6, 34). The solution in the small to our problem
can be obtained by constructing power series at points along I’
chosen such that the circle of convergence about any point intersects
the circles of convergence about the adjacent points as in Fig. 1.2.
We are now in a position to state the Cauchy problem for second order
hyperbolic partial differential equations.



1.2. THE CAUCHY PROBLEM AND CHARACTERISTICS 13

The Cauchy problem in the small for analytic initial value data is
the initial value problem consisting of determining a solution of the
equation

Uy, +buy+cuy+f =0 r

in the neighbourhood of a point P of
a non-characteristic smooth curve
which assumes prescribed analytic
values for » and du/on along T' in
the neighbourhood of P.

The Cauchy problem is extremely
important since it is an example of a Fie. 1.2.
properly posed initial value problem
for hyperbolic equations and represents interesting physical initial
conditions, but quite apart from that, it is important because of the
role it plays in classifying partial differential equations (2). It is
possible to state the Cauchy problem more generally than has been
done here in terms of higher order equations and we now re-state
it for an mth order equation, but later it will be seen that the formu-
lation for first order quasi-linear systems of equations is of more direct
interest to us.

The Cauchy Problem. For a general mth order partial differential
equation in n tndependent variables the mon-characteristic Cauchy
problem for analytic initial data vs the construction of a solution in the
small when, on some non-characteristic surface <, given by

[0, ... 2" 1) =0,

the function w and its first m — 1 normal derivatives are prescribed.

The equation (1.2.1) is of rather special form and the general
non-linear second order equation in the two independent variables
x and ¢ may be written as

Fx,t,u, ug, ), Uy, Uy, y) = 0. (1.2.10)

The Cauchy initial value problem for this equation is the
determination of a solution u in the neighbourhood of a non-
characteristic curve I' specified by

g(x,t) =0, (1.2.11)

along which u and du/on are prescribed at the initial time.
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The derivation of the characteristic equation for the general
non-linear equation (1.2.10) is straightforward and may be carried
out as follows. Setting u, =p, w,=¢q, u,, =7, uy=5,and uy =7in
equation (1.2.10) we obtain

F(x,t,u,p,q,7,8,7)=0. (1.2.12)

From equations (1.2.6) we have two further equations connecting the
variables, namely
G(x,t,u,p,q,7,8,7) =0

H(z,t,u,p,q,7,8,7) =0

where
d
G’Erxa+sya—2i-(—1(ux) =0 (1.2.13)
and
d
H=sz,+my,— - () = 0. (1.2.14)

These equations may be solved uniquely for r, s, and = if the
Jacobian A is non-vanishing, where

o o o
Jor or or
a| o
| 0s 0s 0s
oF 9G oH
or oOr Ot

In terms of the specific forms of G and H given by equations (1.2.13)
and (1.2.14), A becomes

E x, 0
A=| F, t, =z,
F oo i

Thus, the derivatives r = u,,, s = u,, and 7 = u; may be determined
provided the condition

A=F¢#—Fux,t, +Fa2+0 (1.2.15)

is satisfied. Thus, the characteristic directions are given by the
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equation A = 0 when
de_ 1
dt  2F,
which result should be compared with equation (1.1.4).
In summary then we have illustrated that the Cauchy problem for

analytic initial data specified on a non-characteristic curve has a
unique solution in the small.

F,+JF2_4F F}, (1.2.16)

1.3. Mixep BOUNDARY AND INITIAL
VALUE PrOBLEMS

As a preliminary to discussing a situation which is rather more
general than the Cauchy initial value problem, let us return for a
moment to the concept of a domain of dependence introduced in
Section 1.1. We saw in the special case of a second order equation
with two independent variables that the characteristics were deter-
mined as functions of x and ¢ by equation (1.1.4). It then follows
that different points on a given characteristic curve correspond to
different times ¢ and we may thus associate with each characteristic
a direction of increase with increasing time. We recall that the
domain AB corresponding to a point P was constructed by tracing
backwards the two characteristics C‘*) and C~) that pass through P
until they intersected the initial non-characteristic curve I' at points
A and B, respectively, as in Fig. 1.3a. This situation is rather special
and is typified by the fact that as P tends towards the initial curve I
both characteristic directions corresponding to increasing time are
seen to issue out from the same side of I'. Curves I'' with this property
are called space-like. Considering the rather more general initial
curve I' illustrated in Fig. 1.3d, it is easily seen that only that part
of I" to the right of 4 and containing the arc AB is space-like. Along
the remainder of the I' which contains the arc AC the characteristics
through any point issue out on opposite sides of I' with increasing
time.

If a point P is chosen in the shaded region bounded by arc AB of
I’ and the C'P) characteristic issuing out from A in the direction of
increasing time, it is seen to have a domain of dependence on 4B as
illustrated in Fig. 1.3a and the usual Cauchy data must be given
along AB.
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Should the point P be chosen in the other shaded area of Fig. 1.3d
bounded by the same C*) characteristic and the arc AC, then no
domain of dependence is intercepted on I' since only a C*-) charac-
teristic intersects AC. An initial curve such as AC is illustrated in
Fig. 1.3c and is typified by the fact that the characteristics issue out

C(x~)
o) o
P
BF r
C(-)
P
A (@ ()

©

F1c. 1.3. Space-like and time-like boundary curves and mixed initial and
boundary value problems. (a) Domain of dependence of P. (b) I' space-like.
(c¢) T time-like. (d) Mixed boundary and initial value problem.

from a point P of the arc on opposite sides of I' for increasing time.
Such an initial curve is called time-like. Since points of AC are linked
to those of AB by the C~) characteristics, the Cauchy initial data
specified along AB have some influence on AC and data weaker than
Cauchy data must be specified along AC. In this case a suitable
boundary condition would be a linear combination of the Cauchy
type conditions, thus decreasing by one the number of functional
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relations that may be specified along AC. A situation as illustrated
by Fig. 1.3d containing an initial curve I' which has space-like and
time-like parts is said to form a mixed boundary and initial value
problem.

For systems involving several dependent variables there will be
more than two characteristic directions associated with each point.
As before, a curve will be termed space-like if all the characteristic
directions issue out from the same side of the curve with increasing
time. If thisis not the case the curveis called time-like. The number of
initial data to be prescribed is determined by the number of charac-
teristics which issue from a point close to the initial curve I' and
which, when traced backwards in time, intersect I". This point will
be discussed at greater length in the sections dealing with multi-
variable systems.

Using the normal form of a second order hyperbolic equation
established in equation (1.1.1”) we now consider the general wave
equation

Ugy = [(2, Y, U, Uz 0y, (1.3.1)

provided of course, as was explained in regard to equation (1.1.1"),
that the transformation to normal form is non-singular. The charac-
teristics are at once seen to be the straight lines parallel to the
coordinate axes x and y. We now look at an example of a problem
which involves the specification of initial data in a special way and
of the reasoning used to select these data. Let us now consider the
Goursat Problem.

In this problem it is required that initial data be specified along
the characteristic which lies along the positive z-axis and along a
monotonic curve y = h(x) passing through the origin and contained in
the first quadrant as shown in Fig. 1.4.

Let us integrate equation (1.3.1) over the rectangle PQRS to
obtain:

(K3 7§
fjuxydxdy=fff(x,y,u,uz,uy)dxdy.
0Ja 0Ja

Integration of the left-hand side with respect to x gives

(l 1 ("€
fo [0 (&, ) — (0, )] dy = f faf(x,y, w, gy uy) da dy
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whence, finally,

u(&,n)—u(§, 0)+u(a,n) —u(a, 0) fffxy,uu u,)dxdy.

Thus, we obtain the result

7 (€
u(é,m) = us—u0+uR+f ff(x, YU, Uy, uy ) dedy  (1.3.2)
0Ja

y
h'(z)>0
y:h(l‘)
______ Q P
9"
R S -
0 a I3 z

F1c. 1.4. The Goursat problem.

where ug, up, and ug signify the values of u at points @, R, and 8
of Fig. 1.4. If the functional values uy, up, and ug are specified,
equation (1.3.2) then provides the solution to the Goursat problem.
Since u, u,, and u, are contained in the integral of equation (1.3.2),
it is necessary that some method of solution of this type of equation
be established.

One method of obtaining the solution is by utilising the method of
contraction mappings which is of great value in establishing the
existence and uniqueness of solutions for differential and integral
equations. Since this idea will be used again later the general method
will now be discussed in connection with a demonstration of the
existence and uniqueness of a domain of dependence as described
earlier.

To demonstrate the existence and uniqueness of a domain of
dependence for the second order general wave equation, let us again
consider the normal form of the equation that was established in
equation (1.1.1").
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It will be sufficient to consider the equation
Ugy = f(2, Y, u, uy, u,) (1.3.3)

with the initial data v = 0, u, = 0, and u, = 0 specified along some
non-characteristic curve I'. The characteristics are again straight
lines parallel to the axes of # and y, and we begin by integrating
equation (1.3.3) over the region ¥ bounded by the characteristics

Fiq. 1.5.

through the point P with coordinates (£, ) and the initial curve T’
as shown in Fig. 1.5 to obtain

ff Uy d dy =ff fl@,y,u,u,,u,)dedp.
4 4
Integrating the left-hand side we obtain

u(f, 77) - u(xo’ 7]) = J‘J;f(x, Y, Uy Uy, uy) dx d?/ ’

but since by the initial data u(xy,n) = 0 we finally obtain the integral
equation

u(€,m) =ffgf(x,y, U, Uy, u, ) daxdy . (1.3.4)

Since ¥ is bounded by the characteristics through P and the initial
curve I', equation (1.3.4) illustrates the dependence of a solution at P
on a finite part of the initial data given between B and C. However,
we must still show that a solution to equation (1.3.4) exists and that
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it is unique before we have established our claim concerning a
domain of dependence.

Preparatory to solving equation (1.3.4) and establishing its
uniqueness, we will first discuss the basic properties of contraction
mappings.

Consider the metric space & with points z,y €% and metric p,
then the mapping # of & into itself is called a contraction if there
exists a number « <1 such that

p(Ax, My)<op(,y) (1.3.5)
for all points z,y €.
We will later have cause to use a sequence of such mappings and

so let us now examine the behaviour of such a sequence defined by
taking an arbitrary point x,€% and setting

z, = Mx,, zy = M2y, Ty = M2y, ...

Since z, = A2x,, x; = M3x, we have the general result z, = A" x,.
Let us now show that {z,} is a Cauchy sequence. Consider the metric
p(x,,x,); then, from the definition,

P, T) = p(M™ Ty, M™T0) < & p(Tgy Tpp_) - I)
The triangle inequality for metric p asserts that

p(z,y) < p(x,2) + p(y, 2) .

So considering the sequence of points zy, 2y, ...,2,_, and using the
triangle inequality, we may re-write (I) as

P(xn’ xm) < an{P(xo’ xl) + P(xl’ x2) +...+ P(xm—n—l, xm—n)} ’
whence
P(xn, xm) <a® P(xo, xl) {1 + o+ a2 + .+ am—n—l}
and so

o
P(xn’ xm) < (lT'a)P(xo’ xl) .

This establishes that {z,} is a Cauchy sequence since by choice
a<1 and as n->o0, p(z,,z,)—>0. If now the metric space & is
complete, it contains as limit point the point x = lim,_, .

Equation (1.3.5) establishes the continuity of the mapping at once
since as x>y, .#x—.#y and thus the mapping is continuous.
Application of this result to the limit point x gives

Mx = Mlimzx,

n—»
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whence
Mx = lim Mz, . (II)

n—>00

By virtue of the definition of the mapping .#,

'/lxn =ZTp+1
hence (IT) becomes

Mx =limz, ,,
n—>w

and so, finally,
Mx =x.

Let us suppose that this property holds for two such points x,y,
then Ax =z, My=y and thus p(x,y) = p(Ax,#y) and so
p(x,y) < ap(z,y) where, by definition, « <1. Thus p(x,y) = 0 whence
x =y and we see that there is a unique fixed point associated with
M.

This establishes the following theorem.

Theorem 1.1. For every contraction mapping #A defined in the
complete metric space & the equation Mx = x has a unique solution.

This result will now be applied to equation (1.3.4) and used to
establish that a suggested iterative method of solution will converge
and yield a unique result u(x,y) with the required derivatives satisfy-
ing the initial conditions.

Using equation (1.3.4) and differentiating with respect to x and y,
we obtain the three equations

w(é,m) = f Lf(x,y,u, gy y) dez dy

"7
ug(€,m) = f(x,?/,%“z,uy)dy (1.3.6)
Yo
and

(3
w(tn) = [ Sy 0w ds,

The iterative scheme is then the following:

wrsd (€)= [[ 1 g, ug, uie) ddy

w (£,7) = f” flay,u™, i, ) dy (1:3.7)
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and
£
o (6n) = [ Flo g, 0, ) de
Zo

where the first iterates u(®, u{®, and u{” are arbitrary functions
subject only to the condition that initially 4@ = u{® = u{"» = 0.

We must now show that successive sets of iterates u™, (™, and
u{™ converge to a unique solution of the equations (1.3.6). To do
this let us define the three mappings #, &, and J by re-writing
equations (1.3.7) in the form

um+) = Py

("t = FLu (1.3.8)
and
(n+1) — G o (n)
Uy =9 u," .

For the region under consideration, ¢{ —x,<8, n—y,<3$, let us now
assume that |u|<e, |u,|<e, |u,|<e, and

!f(x’y’u’ux’uy)l<L
together with
lful <M, |fy <M, and |f,|<M.

Consequently, from equations (1.3.7) it follows that in the

neighbourhood of '
! wln+l) l < L2

w1 | < L8
and
l u;n+1) l <L$§

and so by a suitable choice of 8 it is possible to ensure that all the
iterates are bounded by e for all n. Let us now consider the sequences
{un+D — g} Ly +D) — ()} and {u{"+1 —u{™} whence, from equations
(1.3.7),

{u(n+l) — u(n)} = J‘j [f(x, Y, u(n), u;n), u;/n))
4

_f(x’ y’ u(n—l), u}tn—l), ul(/n_l))] dx dy

n
fur — ) = [T,y um, u, up)

Yo
_f(x’ Y, u(n—l), uftn—l)’ u;/n—l))] dy
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and
£
(n+1 N — )
(e =) = [ 0o, g, )
0
—f(@,y, u™ D, w1, wn=D)de.

By the mean value theorem for the differential calculus the integrand
common to these three equations may be written

f(x, Y, u(n)’ u(zn), u;/n)) _f(x, Y, u(n—l)’ u‘ftn—l)’ u;jn—l))
= L) = D) 4 £, (0l D) 4, (0 i)

where f,, f,., and f,, are evaluated at an interior point of . Then,
considering the moduli of the sequences, we have the three inequalities

| w(nt1l) — 4y (n) | < MLJ:{ ( | u(n) — gy (n-1) | + | u(zn) _u:(tn—l) l
4

+|ui® —u"D|) dx dy

7
lu;n+l) _u(zn) l < MLJ‘ ( | uln) — yln-1) | + l uén) _u;n—l) l
Yo
+]w{™ —u{r| ) dy (1.3.9)
and
3
| u;/n+1) — u;jn) l < MLJ ( lu(n) —qun-1) l + l u;cn) _u;cn—l) ‘
Zo
+lu{® —u{* | ) de.
Equations (1.3.7) represent a mapping of the space of functions

u, U, and u, and we take as metric between two points @™ and Q-1
of this space

p@™, Q1) = sup {|u™ — w1 | 4|y —yP=D| 4 |uM —yn-D|}.
zyey

Adding equations (1.3.9) and using the metric gives
|+ — ) | 4 {04 — gl | 4| gun D) — gyl |
<ML3(2+38) p(@™,Q"Y),
but using equations (1.3.8) this becomes
| Bu™ — Bun=V | | LuP —Fun=D| 4| Tulm — T uirD|
< ML3(2 +3) P(Q(n),Q(n—l)) .

Since the metric space under consideration is complete, and by
selecting & sufficiently small we may make MLS(2+68)<1, the
previously established theorem on contraction mappings is then
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applicable and asserts that the proposed iterative scheme converges
to a unique solution which satisfies the initial data.

Equation (1.3.4) then demonstrates the existence and uniqueness
of the domain of dependence of the solution at P (i.e., the dependence
of the solution on the initial data on the arc of I' intercepted by the
backward drawn characteristics through P).

1.4. No~N-LINEAR EQUATIONS, QUASI-LINEAR
SysTEMS, AND LipscHITZ CONTINUOUS SOLUTIONS

Since most attention will be given to the study of first order
quasi-linear systems of partial differential equations, it is important
that the connection between a general non-linear equation and a
system of first order quasi-linear partial differential equations be
illustrated by the following important theorem.

Theorem 1.2. The tnitial value problem for a system of general
non-linear partial differential equations with non-characteristic initial
data may be reduced to a non-characteristic initial value problem for a
first order quasi-linear system of partial differential equations.

For simplicity of discussion, the argument will be presented for a
general second order non-linear partial differential equation with the
dependent variable » and the two independent variables x and y, but
the argument is capable of immediate extension to higher order
equations and to equations with m independent variables and n
dependent variables without any essential alteration.

Let us then consider an equation of the form (1.2.10) with
independent variables « and y:

F(a,y, u, ), Uy, gy, uyy) = 0 (1.4.1)

v Yz Yy

subject to the non-characteristic initial conditions on x = 0,

u(0,y) = f(y)

(1.4.2)
u,(0,y) = 9(y) -
Differentiation of equation (1.4.1) with respect to z gives
8F OFou oFop OF ogq OF or OF 0s BF ot —0 (143)

toum T portq Tt G e o o
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where
Uy =P
u, =q
Uy (1.4.4)
Upy =8
Uu, t
Noting that "
Qe =Py =S$
S,=1,
and z (1.4.5)
t Sy,
equation (1.4.3) reduces to
F,+F,p+F,r+Fs+Fr,+Fr,+Fs,=0. (1.4.6)

If we collect together the results of equations (1.4.4), (1.4.5), and
(1.4.6), we obtain the following quasi-linear system of equations in
the dependent variables u, p, q, r, s, and ¢:

F,+Fp+F,r+Fs+FEr,+Fr,+Fs, =0

Uy =P
=r
Pa (1.4.7)
Ay = Dy
§,=1y
by =8,.

The initial conditions may be obtained from equations (1.4.2), and
amount to the specification of u, p, ¢, r, s, and £. However, r is not
known explicitly but since the initial conditions are assumed specified
on a non-characteristic curve we have seen in Section 1.2 that r may
always be determined and so we may set r = G(z,y,p,4q,s,t). Thus,
the initial conditions on # = 0 become

u(0,y) = f(y)
2(0,y) = g(y)
70.y) =) (1.4.8)
8(0 y) =9 (y)
) =f"ly
( y) = G(O Y9, ), 9'W).f" ().
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To study the equivalence of the solutions corresponding to the new
system of equations (1.4.7) and the original equation (1.4.1), we
must show that a solution of equation (1.4.1) satisfying initial
conditions (1.4.2) is also a solution of the system (1.4.7) and vice
versa. The first part of this equivalence is established immediately
by noting that if u is a solution to equations (1.4.1) and (1.4.2), then
u, P, g, 1, 8, and ¢ will also be solutions to the new system of equations
(1.4.7) with initial conditions (1.4.8).

Let us now assume that u, p, q, r, s, and ¢ are solutions to the new
system of equations with initial conditions (1.4.8). If these quantities
do not simultaneously satisfy both the original equations and the new
system, there will be defined the non-zero quantities:

dy =p—u,

d,=q—u,

d,, = r—u, (1.4.9)
Gy = 8—Uyy

dyy = t—uyy.

Let us proceed now as follows. From the second equation of (1.4.7)
we see at once that
d,=u,—u,=0.

From the definition of d,, we have

0
zr — EIZ Uz
_ 0(uy) _
T ox ~ =0

and so d_, =0. Using the initial conditions on # = 0 we have that

dpy = 8— Uy,
_ o O(uy)
= 8§— ay
a ! !
=s—L=gy)-gH =0,

oy
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and so d,, = 0. To establish that d,, is identically zero we form the
expression

b, @0,
ox Y ox 3x( v
o 0
=3_y_'@(uxz)
0

and thus we have shown that d,,=0. Similar arguments establish
that the other differences are identically zero. To show now that
the quantities u, p, ¢, r, s, and ¢ also satisfy the differential equation
(1.4.1), we note that from the initial conditions F = 0, and substitu-
tion of u, p, ¢, r, s, and ¢ into equation (1.4.7) gives

0
%F(x’?/,p,q,r,&t) =0

and thus we finally arrive at the result F'=0 which was to be shown.
So far our attention has been confined to analytic initial data
which is of course a very restrictive requirement and is not represen-
tative of physical situations. It is necessary for most applications of
quasi-linear initial value problems that the previous arguments be
extended to include initial data which whilst continuous may still
possess bounded discontinuities in a derivative. This situation is
described by the concept of Lipschitz continuity defined as follows.

Definition. A function f(x) is Lipschitz continuous on [a,b] if
|f(2) —f(zg) | S M |2y — 25| for M a constant and for all z,,x, in [a,b].

Two simple consequences of this definition which may be seen at
once are that a Lipschitz continuous function f(x) is a continuous
function on [a, b] and the modulus of the derivative of f(z) is bounded
on [a,b] by M. The first fact follows by noting that as

Ly —> Xy, |f (1) = f(3) >0

and the second by forming the limit function

(1) —flag)| _ |df

lim ——————=" =
Ty—> Ty lxl_le dx

<M.

=Ty~
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A trivial example of a Lipschitz continuous function is given by
the solitary wave illustrated in Fig. 1.6. The extension of the initial
value problem to Lipschitz continu-

ous initial data has been accomplished

m by Lax (21) who considered the more
general case of a system of first
order quasi-linear equations with two
F1e. 1.6. A solitary wave. independent variables. This system
of equations was of the form
U+AU,+B =0

which represents a hyperbolic system provided the eigenvalues of 4
are real and the eigenvectors are linearly independent. In making
this extension, it is necessary to define first what is meant by a
solution of the system of equations. To do this Lax appealed to
physical systems and by analogy required that in some sense the
solution should be continuously dependent upon the initial data.
He first considered a linear hyperbolic first order system

U,= AU, +C (1.4.10)
with analytic initial data

U(x,0) = O(x) (1.4.11)
where U and C are column vectors with » components and 4 is a
positive definite n x n» matrix. By using an a priori estimate of the
solution of (1.4.10) and (1.4.11) and an iterative scheme with
reasoning similar to that of Section 1.3, Lax was able to show first
that for a quasi-linear system, in spite of the analytic initial data, a
smooth solution U(z,?) could in general only exist for a finite time
t, beyond which the first derivatives may become unbounded. The
next stage in this argument was to approximate a Lipschitz
continuous ®(x) by a sequence of smooth functions {®;} to obtain a
corresponding sequence of smooth functions {U;} as solutions to the
system (1.4.10). He showed that in the limit {U}} tends to a Lipschitz
continuous solution known as a generalised solution which may be
continued in time until it ceases to be Lipschitz continuous. It was
further shown that if @’ is continuous almost everywhere, then its
discontinuities are propagated along characteristics. This extremely
important result implies that the wave front as we have discussed it
is propagated along the characteristics.

In summary then, we have seen that the solution to a Lipschitz

continuous initial value problem may be approximated by a sequence
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of continuous solutions and, furthermore, that the initial disconti-
nuities propagate only along the characteristics of the system of
equations. That is, the first derivatives of the solution which exist
almost everywhere are continuous except possibly at points which
can be connected by a characteristic to a point of discontinuity of
the derivative of the initial value on the initial interval. We have
seen that this important result is equivalent to the wave front being
propagated along characteristics and we shall use this result to
extend our arguments to include Lipschitz continuous initial data
which will occur frequently, as, for example, in the case of a wave
propagating into a constant state.

1.5. SYSTEMS OF QUASI-LINEAR EQUATIONS
WITH MANY VARIABLES

In the previous section we introduced a special system of quasi-
linear equations, namely, equations (1.4.7). In this section we will
be concerned with general systems of first order partial differential
equations that may be written

Fy(a, 21, ..., 2™ U} Ugo, Upsy ooey Ugm V5 Vgoy Vgt oevy Upm

Wi Wy Waay vevy Wym) = 0, 1=1,2,...,r (1.5.1)
involving the (m+ 1) independent variables a0 «!,...,2™ and the n
dependent variables u, v, w, ... together with their first order deriva-
tiVes Uye, U, +ovy Vo, Ugay ooy Wyoy Wy, ... Where the F; are arbitrary non-
linear functions (2).

Systems of partial differential equations are called quasi-linear
when at least the highest order derivatives occur linearly in F;.
Systems of equations which are linear with respect to the unknown
functions and all their derivatives are called linear. The systems of
equations that will now be examined are those in which the number
of equations r equals the number of dependent variables » and thus
r =n. Such systems are said to be determined systems of partial
differential equations.

Denoting the (m+1) independent variables by 20 «!,...,2™ and
the n dependent variables by wu,(z%!,...,a™), ..., u,(2% 2%,...,2™)
or, more simply, by u,,%,, ...,u,, the general first order system of
quasi-linear partial differential equations may be written

§J ga' 3—""+b =0 (1.5.2)
=1720 PG ppr ' P
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where p = 1,2, ...,n and the coefficients aj,, and b, are functions of
the independent variables z°z!,...,2™ and u,,u,,...,%,. A more
concise formulation results from the use of matrix notation when
equations (1.5.2) may be written

m
S AU, +B=0 (1.5.3)
r=0
where
[ o, af, . . . aj, ] Uy ] [ b, T
R R Ug by
A, = , U= , B= ,
L ayy ah, . . . ah, L U, | b,
and
oUu
U = -

To illustrate this we now write the special quasi-linear system of
equations obtained in (1.4.7) in matrix notation. Define the vector
U and the matrices 4, and A; by the expressions

T w7 "1 0 0 0 0 0 T
P 010 0 00
q 001 0 00
U= , Ay = R
r 000 F 00
s 000 0 1 0
|t [ 000 0 0 1 |
"0 0 0 O 0 0
0 0 0 0 0 O
0 -1 0 0 0 O
and 4, =
0 0 0 F F o
0 0 -1 0 O
L 0 0 0o 0 -1 o0 |
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and note that in the case of equations (1.4.7) the vector B of equation
(1.5.3) is linearly dependent on U and may be written

B=CU+D
where
- 0 -1 0 O 0 0 7 [ 0 ]
O 0 o0 -1 0 O 0
0O 0 o0 O 0 0 0
C= and D=
0 F, 0 F, F, 0 F,
o 0 o0 O 0 o0 0
L o 0o 0 0 0 0 _ | o0 |
The system (1.4.7) then finally becomes

AU+ A, U, +CU+D =0 (1.4.7")

which is expressed in the required form.

In later chapters the coordinate x? will be identified with the time
¢t and there will then be a system of equations with m space variables
al, %, ...,2™, but for the present it will be convenient to avoid this
special notation.

An extensive theory exists for equations of the form

AUpt X AU, +B =0 (L5.4)
r=1

in which the matrix 4, is the unit matrix and the matrices 4, are
symmetric. It is useful and interesting to examine the conditions
under which equation (1.5.4) may be transformed into a system in
which 4, becomes the unit matrix and in which symmetry may be
preserved in the new matrices 4,. It should first be noted that
provided 4, is non-singular its inverse Aj! exists, but that pre-
multiplication of equation (1.5.4) by Ag! destroys any symmetry
possessed by the matrices 4,.

We begin by assuming that A4, is positive definite since, as we shall
see later, this is the case for physically interesting problems. Since
A, is positive definite it may be represented in the form

Ag=M'M (1.5.5)

where M’ is the transpose of M and where M is a non-singular
matrix. Set MU = V and note that since M is in general a function
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of 20, z1, ..., 2™, the following relationships are true:

MU, =Ve— M, MV

x

U, = M-V, — MM, M-V .

xr

(1.5.6)

Substitution of equations (1.5.5) and (1.5.6) into equation (1.5.4)
and pre-multiplication by (M')~! gives

Vot 3 (M) 4, MY,

r=1
C[Ma M-+ ¥ (M)A, M1 M, M-V +(M')-1B = 0.
r=1
(1.5.7)

Since the terms (M')14,M-1= (M)A, M1 it immediately
follows that matrix multipliers of V,, are symmetric provided the
A, are symmetric and thus the desired transformation has been
achieved.

Hereafter, without loss of generality, systems of equations of the
form (1.5.4) will be written

Ust X AU, +B=0 (1.5.8)
r=1

where, if the A4, are symmetric in the original system, the symmetry
has been retained in the new system. The different 4, and B
occurring in equations (1.5.4) and (1.5.8) should not cause confusion
since equations (1.5.4) will not be used again. Following the
definitions given at the start of Section 1.1 we now apply them to
the system of equations discussed here and note that the system is
called quasi-linear if the 4, and B depend on 2% !, ...,2™ and on U.
If the A, are independent of U the system is called semi-linear and,
finally, if B is also a linear function of U the system is called linear.

Systems of equations of the type (1.5.8) are of considerable
interest since many important problems of physical interest may be
formulated directly in terms of such systems and, as we have just
shown, general non-linear partial differential equations may be
reformulated as a quasi-linear system with the same solution. Having
thus prepared the basic notation for our study of quasi-linear
systems we now proceed in the next section to a study of hyperbolic
systems and their characteristics.
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1.6. Quasi-Linear HyperBorLICc FIRST ORDER
SYSTEMS AND CHARACTERISTICS

The method of characteristics seeks, by an appropriate choice of
coordinates, to replace the original system of first order partial
differential equations by a system involving characteristic coordinates
in terms of which the differentiation becomes considerably simplified.
It will be seen later that the reduction is of special significance when
applied to the class of equations known as hyperbolic and that the
reduction becomes particularly simple and useful when applied to
systems involving only two independent variables.

Consider the general system of quasi-linear partial differential
equations involving (m +1) independent variables and » dependent
variables introduced in equation (1.5.3):

Y AU, +B=0, (1.6.1)
r=0

together with suitable initial conditions prescribed on an (m+ 1)-
dimensional surface. Equations of this form may describe the
propagation of a wave or a discontinuity in space-time where, for
convenience of notation, the time variable will still be denoted by «°.

We will now proceed as in an earlier section and seek to determine
the generalised surface or manifold & in (m+1) dimensional space-
time across which the normal derivative of U is indeterminate. Let
us first note, however, that constraints of the form

[t ..., 2™) =0 (1.6.2)
or, the equivalent form,
20 = g(x!, 22, ..., 2™) (1.6.3)

define such a manifold and, in particular, when m = 3 the manifold
represents a surface in conventional space-time. Also, when the
function g of equation (1.6.3) is a constant, say, z3, then 2% = «f is
said to define a hyperplane. We will also have occasion to consider
vectors A which are simply ordered sets of numbers (A% AL, ...,A™)
and which will be considered to define a normal to a manifold & if
XN = gf [oxr. Tt follows directly from this definition by analogy with
differential geometry that a directional derivative in the direction
of A is an expression of the form

0 0 0
.V = \0— 1 _—
A-V=2 5 5+ A 3x1+...+)\maxm.
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Let & be the manifold across which the normal derivative of U is
indeterminate and let ¥ be defined by the expression

e, ...,2™) = 0. (1.6.4)

Now introduce new coordinates £9, £1, ..., é™ to be chosen such that
£, &% ..., ém determine a point on & which is itself defined by ¢ = 0
and set £% = ¢. In terms of these new coordinates, the derivative
0/0x" in equations (1.6.1) becomes

8 _mag o

%‘=i§03}?3—§i’ T=O, l,...,m. (1.6.5)

Re-writing equations (1.6.1) in terms of result (1.6.5) we obtain

72n1A E g—f;%]z+B—0 (1.6.6)

Let us now re-write this expression separating out the derivative
normal to & to obtain

Z 4,8, U+ Z ZlA £&.Us+B=0. (1.6.7)
r=01i=

Equation (1.6.7) may be solved for Uy, the derivative of U normal
to &, provided the matrix Y™, A4, £% possesses an inverse. The
condition we are seeking governing the indeterminacy of U, is
then clearly the condition that this matrix should be singular. This
at once gives the condition that the characteristic determinant A
associated with the matrix should be zero. Thus, we obtain

=0 (1.6.8)

0
rSx”

as the equation determining the characteristic manifold & across
which U, is indeterminate. Since the new coordinates were chosen
arbitrarily we see that the characteristic manifolds of a system are
invariant under transformations of the variables involved. If the
elements of 4, are denoted by aj,, and £2. by A" and the summation
convention is used, equation (1.6.8) may be written more concisely as

=|as,N| = 0. (1.6.9)

If equation (1.6.7) is considered at points P+ and P~ on either side
of and arbitrarily close to a point P of &, and the difference is
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formed between the points P+ and P-, we then obtain the
characteristic equations

(éoA, gg,) [Up] = 0 (1.6.10)

in the limit as P+ and P~ tend towards P and where [X] signifies the
change in quantity X across % when evaluated at P. This result
follows because the other derivatives are continuous across & ; the
discontinuity existing only in the normal derivative.

This is a homogeneous system of n equations and will play an
important part in later applications of the theory of characteristics.
The form in which equations (1.6.10) are written is not the most
convenient one and we now recast it for the benefit of later work.

Defining
dp

A-V,p= EArax,,

(1.6.11)

we use the fact that £° = ¢ to write equation (1.6.10) in the form
(A0§0+A qup) [U,] =0, (1.6.12)

where V, operates on z!, 22, ...,2™.
Let us now examine the nature of the quantity [U,] which appears
in equation (1.6.12). Form the expansion

U(p + h) = U(p) + hU% + Remainder (1.6.13)
and set
8U = {U(p+h)—U(p—h)}, (1.6.14)

where U# denotes the value of U, on opposite sides of &. Then, for
U continuous across %, equations (1.6.13) and (1.6.14) imply that
(0,1 = (1/R)8U (since U} =0) and so equation (1.6.12) becomes

(A0§¢0+A V,go) SU=0. (1.6.15)

Let us now return to the characteristic equation (1.6.9). We
observe that it implies that if there exists a manifold %', defined by
f@0, 21, ...,2™) = 0, passing through a point P with derivatives

o _ _
G =N r=01L..m (1.6.16)
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which define a normal A to &’ at P with components A% AL, ..., A™
and such that equation (1.6.9) is satisfied, then &’ is characteristic
at P. By the construction of A, any infinitesimal surface element
located at P and normal to A is an element of a characteristic
manifold. Each vector A satisfying equation (1.6.9) is called a
characteristic direction and represents a generator through point P
of a generalised cone with its apex at P.

The characteristic equation (1.6.9) is homogeneous of degree n in
A" and has coefficients determined by those of the original system
of equations. In the special case that the system is linear, equation
(1.6.9) is only a function of position and the characteristics may be
determined immediately without knowledge of the solution.

In order to state a non-characteristic initial value problem, it is
necessary to know the condition that a manifold .# is characteristic.
As a first step toward answering this question note that if we consider
a hyperplane that is normal to a coordinate axis, say x° = x5, then
its normal is specified by A" = §,, where §,, is the Kronecker delta,
and determinant (1.6.9) then reduces to

AP= Ia;;qasrlp. (1.6.17)

Clearly then, z® = x% is characteristic at P if Ap = 0. More generally,
a manifold is characteristic at P if its tangent hyperplane at P is
characteristic.

The equation of the tangent hyperplane at a point F, with
coordinates (x3,x}, ..., ") and with its normal A determined by the
numbers (A, A}, ..., AF) is seen to be

fnj (2 —at) = 0. (1.6.18)
r=0

An infinitesimal displacement from a point P in the direction A is
called time-like if the matrix

MNA+MNA +...+2m4,, (1.6.19)

is positive definite (Appendix A). The element of hypersurface at P
to which A is then normal is said to be space-like. If, on the other
hand, the matrix (1.6.19) is indefinite an infinitesimal displacement
in the direction of A is called space-like and the element of hyper-
surface at P to which A is normal is said to be time-like.
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The system of equations (1.6.1) is called hyperbolic if a space-like
hyperplane exists at each point of the domain in question. We shall
usually identify x° with the time variable ¢ and assume that the
hyperplane x° = constant is space-like and so, selecting A = 1, AX¥=0
with ¢ = 1,2, ...,m we see that this is equivalent to the assumption
that the matrix A4, is positive definite (2, 6, 34).

With this assumption we use the transformation of Section 1.5 to
bring equations (1.6.1) into the form

m
U.+ 3 A4,U,+B=0. (1.6.20)
r=1

When, for all sets of numbers A}, A2, ..., A", the matrix
Q=NA,+24,+...+ "4, (1.6.21)

has n distinct real eigenvalues, the system of equations (1.6.20) is
called totally hyperbolic in the z°-direction. If for some sets of
numbers A, A%, ..., A" some of the eigenvalues of ¢ are imaginary the
system of equations (1.6.21) is called wltra-hyperbolic.

If we return now to equation (1.6.15) we may re-interpret these
definitions in terms of an interesting physical situation as follows.

First, since we are assuming «° = constant is a space-like hyperplane,
let us replace the matrix 4, in equation (1.6.15) by the unit matrix 1
and re-interpret the matrices 4, of definition (1.6.11) as those
obtained by using the transformation of Section 1.5 to obtain

(Ig—:o+A-V,¢)3U=0. (1.6.22)
Normalising equation (1.6.22) by dividing by |V, ¢| and setting
0p|0x0
- =—A 1.6.23
V2ol ( )
and
Va? _ (1.6.24)

Vool
the unit normal to the wave front in the direction of the vector V¢,
we may re-write equation (1.6.22) as
(A-n—-Al)éU =0, (1.6.25)

which is the form of the characteristic equations which will be used to
determine the infinitesimal disturbances of the dependent variables
themselves. Namely, when A is an eigenvalue of the determinant
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associated with equation (1.6.25), 8U can be determined uniquely
except for one arbitrary constant. Incidentally we note that the
characteristic equations (1.6.25) follow directly from the original
equation

U+A-V,U+BU =0,
by making the substitution

a ’
s (1.6.25")
V—>néd

in the principal part.

By identifying «° with the time ¢ we see that A of equation (1.6.23)
is the velocity of propagation of the wave front and n is the wave
front normal. In terms of definition (1.6.24), the set of numbers
AL A2 ... A" appearing in the expression (1.6.21) determine a wave
front normal n and, via the characteristic equation

|A-n—M|=0, (1.6.26)

the velocities of propagation A of the wave front. Using the definition
of a totally hyperbolic system that n real and distinct eigenvalues
must exist for all sets of numbers AL, A%, ..., A™ in expression (1.6.21)
we see that this corresponds directly to the following statement.
The system of equations (1.6.20) is totally hyperbolic when for all
orientations of the wave normal n all the normal wave propagation
velocities A of equation (1.6.23) are real.

Similarly we state that when, for some orientations of the wave
normal n, some of the normal wave propagation velocities A are imaginary,
the system of equations (1.6.20) is wultra-hyperbolic. For ultra-
hyperbolic equations discontinuities may exist not only in space-time
but also in ordinary space.

We saw in Section 1.4 that higher order equations may always be
reduced to an equivalent first order quasi-linear system of equations
of the type just examined. It is important that we should note that
the method of reduction is not unique and can introduce redundant
eigenvalues into the characteristic equation which must be dis-
regarded. To illustrate this point let us transform the equation

a 32_u +c @ +u=0
ot? ox?
into the system
U+AU,+B=0.
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The non-uniqueness of this reduction may be seen by considering the
two equivalent substitutions

(i) u=?ﬁ u=3_u
1T o 27 ox
and
P S Y.
1T o :T ot ox

which both reduce the second order equation to the required form.
For substitution (i) we find that

Uy 0 c¢la O
U= u, |, A= -1 0 o0 |,
U 0 0 1
and
ula
B = 0
— (g +uy)

and for substitution (ii) that

Uy —cla cla 0
U= u, |, A= —(1+c/a) cla 0 |,
u 0 (U
ula
and B= ula
—3(uy +u,)

The characteristic equation
|[A-M|=0

gives in both cases the genuine eigenvalues A = + J=c¢/a and for
(i) the redundant eigenvalue A = 1 and for (ii) the redundant eigen-
value A = . To determine the redundancy of an eigenvalue we use
the characteristic equations corresponding to (1.6.25) and the
condition that « must be a smooth solution and not just a Lipschitz
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continuous solution. By way of example let us consider the
characteristic equations corresponding to (i):

c
—)\3u1+58u2 =0
— du, — Adu, =0

(1=2A)du =0.

For the eigenvalues A = + «/ —c/a we see that the first two equations
are consistent determining the ratio of the jumps du, and du, and,
since A#1, the last equation implies du = 0. However, for the
redundant root A =1, the first two equations require that
du, = du, = 0 whilst the third equation then places no restriction at
all on du and so violates the smoothness condition required for .

We close this section by stating the:

Analytic Cauchy Problem for Quasi-Linear First Order Systems.
Let analytic initial data be specified on a non-characteristic manifold
M which, for convenience, will be chosen to be the hyperplane x° = x%
where P is some point in the hyperplane. The analytic initial value
problem 1s then the specification of the analytic functional values

Uy (@B, 22, ..., a™) = g (2, 22, ..., 2™, g=12,....,n (1.6.27)

on M with the requirement that the solution sought is that which
assumes the prescribed values u, on A and which satisfies the system
of equations elsewhere.

1.7. RaAYs AND WaAvVE FRONTS

We have seen that hyperbolic systems of equations may be
described in terms of wave propagation and that in general this
description is rather complicated. If such a detailed solution is not
required, the solution to a simplified problem comprising the descrip-
tion of the propagation of the characteristic manifold or wave front
& specified by

e at, ..., a™) =0 (1.7.1)

may be studied. To do this we construct a theory of ray optics
analogous to that of ordinary geometrical optics (38). Let us then
return to equation (1.6.8) defining the characteristic determinant and,
recalling that the coordinate £° normal to % was chosen such that
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£0 = 0 coalesces with ¢ = 0, the determinant becomes

7
A03?o+ ZA = 0. (1.7.2)
Equation (1.7.2) is then a polynomlal of degree n in the derivatives
Pp; = Op[oxt and will be written

H(x0 a2, ..., 2™ ; Uy, Ug, .., Uy 3 Doy D1y -+->Pm) = 0. (1.7.3)

When u,,u,, ...,u, are known as functions of % «, ...,2™, this is a
non-linear first order partial differential equation for ¢ and will serve
as the starting point of our derivation of a system of ordinary
differential equations in the space of the variables 9 a%,... 2™,
D> P1» -+ -» P, Which will then be interpreted in terms of rays.

We note first that since H is a homogeneous polynomial of degree
n in the p,, then

m  oH
—=nH =0,
§ “op;
which may be written
pV,H=0, (1.7.4)

where p is the (m+1)-dimensional vector with components
Pos P1s --+» P and V,, H is the vector with components

0H |3p,, 8H [0p,, ..., 3H |3p,, .

Since p is the normal to the characteristic manifold ¢ = 0, the
above equation implies that the tangential vector is parallel to V, H,
namely, we have

dx?® dat dx™

3H/3p0=3H/3p1= =3H/3pm=ds (1.7.5)
where da?, dal, ..., da™ are differentials in the surface ¢ = 0 such that
m 3gp )
dp =X s ~dat = Zp,da = 0, (1.7.6)

i=0

and ds represents the line element on the surface.
On the other hand, in the surface ¢ = 0, equation (1.7.3) holds
everywhere and hence it follows that

s = 5 (n )

oH Gp, aH) i
op; 0 Oxt o

2(255,375+axz 5!
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that is,

0H op; __0H
P 5y, 5 = (1.7.7a)
while
-3 p‘d i (1.7.7b)
From equations (1.7.5), (1.7.6), and (1.7.7) we obtain
dxt  0H .
~£='a—p; 11—0, 1,...,m (1.7.8&)
dp;  0H
a=—a (1.7.8b)
dp ™ 0H
o= 21’1 oy = =0. (1.7.8c)

Equation (1.7.8a) determines a family of curves in (m + 1)-dimen-
sional space-time which will be called rays. By virtue of equation
(1.7.4) the rays are always in the surface of the characteristic manifold.

The spatial component of V,H is called the ray velocity and
the spatial component of the normal p is called the normal velocity.
It will be seen that a strict parallel exists between these results and
the treatment of the Hamilton-Jacobi equation which is closely
related to equation (1.7.3) (2, 6).

This relationship is easily seen when the polynomial (1.7.3) is
solved algebraically for p, to obtain the Hamilton-Jacobi equations

H = ﬁH(i)

j=1
HD =p + D (a0, 2, ..., 2™, Uy, Ug, ..., Uy s D1y Pas oo D) = 0. (1.7.9)

The values of p, thus given in terms of p,,...,p,, of course corre-
spond to the n eigenvalues A of equation (1.6.26), some of which may
be degenerate.

It can also be easily seen that equations (1.7.8a,b) become the
canonical equations of motion for the Hamiltonian 5#),

k ()
% - %i’_ (1.7.10a)
k
d; oH )

where k ranges from 1 to m while da?/ds = 1.
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Namely, corresponding to the different modes of propagation
determined by the H), we have the systems of motion of particles
governed by the Hamiltonians s#). The ray velocity corresponds to
the velocity of the particle while the normal velocity corresponds to the
momentum.

Since the Hamiltonian depends on u,,us, ..., u, the characteristic
manifold cannot be given unless a solution is first obtained. However,
for a wave front proceeding into a known undisturbed state, such as
a constant state, the u; in equation (1.7.3) or (1.7.8), etc., can be
replaced by the values for the undisturbed state.

Let us consider by way of example that the wave front
p(t, 2!, ...,2™) = Oisgiven att = 0 by ¢(0, 2%, ...,2™)= (2!, ..., 2™) = 0
such that the disturbance is initially confined to a closed m-dimen-
sional surface enclosing the origin. Then the initial momenta pJ
corresponding to a point (}, ..., ) on the initial surface are given by

o
376: ’
By means of these initial conditions (f,p%), the solution of the
canonical equations (1.7.8), {x®(t),p,(t)}, is determined for ¢>0;
the curve in (m + 1)-dimensional space-time described by the solution
{x¥)(¢)} is simply the ray, whilst the hypersurface generated by the
rays issuing out from all points on the initial surface forms the
characteristic manifold, a time section of which, if projected onto
the m-dimensional space, determines the wave front. Alternatively,
the wave front at a time ¢ may be obtained by tracing a point in m-
dimensional space given by a solution {x'*)(f)} as the corresponding
initial point {x}} moves over the initial surface.

If the matrices 4, in the original equation do not explicitly depend
on the space-time variables, then, for a wave proceeding into a
constant state, the H are functions of p,,p,,...,p, only, and
accordingly by virtue of equation (1.7.10b) the p, become constant.
Thus equation (1.7.10a) may be integrated to give the solution

¢ = k=1,....m.

D)
x"—xk=( ) t, 1.7.11a
. ° opy |1} ( :
with
D= 1. (1.7.11b)

If the initial closed surface shrinks to the origin then the charac-
teristic manifold is a hypercone with its apex at the origin and is
generated by straight rays issuing out from the origin.
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An alternative method of constructing the wave front is to make
use of the normal velocity. For instance, suppose that in the special
example just considered above the initial surface is a plane in
m-dimensional space. The normal vector n is then everywhere
constant on the plane and consequently each eigenvalue A is
constant on the plane. Hence the wave front is given by a plane
moving with the velocity A’ n in the direction of its normal.

The envelope of these planes determines the wave front diverging
from the sphere which is the envelope of the initial planes; the wave
front from a point source is given, of course, by its limit.

More concisely, the wave front from a point source may be con-
structed by means of the surface of normal velocity which is given as
follows. Let us assume that A does not change its sign as n varies.
Then, for a given n, a point is fixed by the polar coordinates A, n.
As n varies, the trace of the point determines a surface in m-dimen-
sional space (i.e., the surface of normal velocity).

The surface of normal velocity may often be constructed con-
veniently by means of the reciprocal surface introduced in the
following way. Dividing equation (1.7.9) by —p,, and replacing
—P1/Pos s — Pl Do bY ky, kg, ..., k,, we obtain

AN ky, kgy ..y k) =1 (1.7.12a)

which is the reciprocal surface in the m-dimensional space when
ky, ks, ..., k, are identified with the space coordinates x!,z%,...,2™,
respectively; or, by replacing po, py, ..., pn by —1,ky, ..., k,, respec-
tively, we may re-write the equation in the form

H(—1,ky, kg, ..., k,) = 0. (1.7.12b)

Once the surface of normal velocity has been obtained the wave
front may be easily constructed. At a point on the surface, construct
the plane normal to the radial vector from the origin. The envelope
of these planes is the wave front diverging from the origin at unit
time.

In the cases considered so far the equivalence between these two
methods of construction of the wave front using the ray velocity and
the normal velocity may easily be established.

Namely, if the initial disturbance is on a plane then, after a time ¢,
the wave front is given by the plane whose distance from the initial
plane is Af. The method involving the ray velocity leads to the wave
front given by the uniform displacement v,¢ in terms of the ray
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velocity v,. On the other hand, from equations (1.7.4) and (1.7.8a)
it follows that

dad dx
PoEg'*'P 75 0
in which p and & are the spatial vectors (p,,ps,...,p,) and
(21,22, ...,2™), respectively; or, dividing by da®/ds, we obtain (see
Fig. 1.7a)
A=n-v

r

ds

V.2l

v.

o N

ds
(a) (b)

F16. 1.7. The relationship between the normal speed and the ray velocity (a)
for a plane wave, (b) for an arbitrary infinitesimal surface element.

which immediately implies the desired equivalence. For waves from
an arbitrary initial disturbance the above relations are still valid for
an infinitesimal surface element of the wave front, i.e., after a time
¢t an initial surface element dS is shifted along the ray to dS’ (see
Fig. 1.7b) and the normal from dS to the tangential plane of 48’
determines a distance A in the direction n since p and consequently
n are constant along each ray.

Conversely, the normal to the radial vector drawn to a point on
the surface of normal velocity is tangential to the wave front.

If H is quadratic in py, py, ..., p,, and we set

HE%.

.

Tz

ogfkpipk (g% = g*), (1.7.3")
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the reciprocal relation between the ray and the normal velocity is
given in an explicit form. The present Hamiltonian equation (1.7.8a)

takes the form
m da?
ik —_
k§0g Dy = dS ’
and solving these equations with respect to p, we have
m dx®
Pr = Eogikjd; ’
where g, is defined by the equation
9irn 9% = 8{:

with 8] the Kronecker delta.
Inserting this expression for p; into equation (1.7.3") we obtain

Y9 daidak =0
ik

which is the so-called geodesic equation and in the present case
determines the ray. Namely, this equation may be written
de* ™ dxt dxk
900+2290k dt + 2 ik —3, dt dt =0
k=

II
[

or
5 k < e
2
Joo 2k21 (Gor.7y) ¥, Z (G niny) v =0
ko1
where v, and n¥ are given by
v, =0,n, n, = (n},n2 ..., n").

From this equation v, is determined when n, is specified.

We have assumed so far that the A’ do not change sign as n varies.
However, the method of construction of the surface of normal
velocity may easily be extended to the case where the A’ do change
sign. Suppose that A is positive for the angular domain Q, including
the positive x-axis and is negative for the angular domain Q,. Then the
plane wave proceeding in a direction n® € Q, has a negative normal
velocity —|AY n(®)|; this implies that as ¢ increases the wave proceeds
in the direction given by —n. Hence the surface of normal velocity
corresponding to the domain €, may be constructed such that the
polar coordinates of points on the surface are given by |AD|, —n®,
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The wave front may be obtained exactly as before. Since in this
case the surface of normal velocity for A¥) negative may be in the
domain for which x> 0, the whole wave front may also be located in
the domain x> 0. If this is the case the time axis is outside the
corresponding characteristic hypercone obtained by connecting the
wave front to the origin.

|
|
\: N/

0

(a) ()]

F16. 1.8. Two illustrations of a wave front from a point source in two-
dimensional space. (a) The time axis is inside the characteristic manifold.
(b) The time axis is outside the characteristic manifold.

Generally speaking, if the time axis is completely outside the cone,
then the disturbed spatial region is strictly localised within a cone-
like surface in m-dimensional space with its apex at the origin of the
space. So if we consider a small amplitude solution linearised around
the constant state and assume that the disturbance is always located
at the origin so that a steady state is realised, we then have the
spatial discontinuity given by the spatial cone which is the projection
of the hypercone in (m + 1) dimensions onto the m-dimensional space.

On the other hand, if the time axis is inside the characteristic
hypercone, then in the limit as t—>o00 the disturbance extends over
the whole m-dimensional space and no spatial discontinuity exists
(see Fig. 1.8).

The existence of the spatial discontinuity in the steady case
implies that the original equation admits of some real characteristic



48 1 ¢ GENERAL HYPERBOLIC EQUATIONS

root even if the time derivative is set equal to zero (see Chapter 8).
It is well known that spatial discontinuities of this kind appear in
the vicinity of obstacles placed in steady flows.

Illustrative Examples

1.8. THE MaXwWELL EQUATIONS

The partial differential equations describing an electromagnetic
field, the Maxwell equations, are, when written in Gaussian units,

10D 47,

Z—'ET—VXH=—?] (1.8.13/)

10B

(—:'a—t'l'VXE =0 (1.8.1b)
V-B=0 (1.8.1c)
V:D = 4mp* (1.8.1d)

where B is the magnetic induction vector, D is the electric displace-
ment, E is the electric field vector, H is the magnetic field vector, c is
the velocity of light in a vacuum, j is the current vector, and p* is
the charge density. In the subsequent discussions the current j
and the charge p* will be assumed to be given functions of space and
time. By taking the divergence of equation (1.8.1b) we obtain the
result that

%awm=o (A)

but if equation (1.8.1¢) is true initially, equation (1.8.1b) implies,
as a consequence of (A), that V-B = 0 for all time. To find the
condition that equation (1.8.1d) holds for all time provided that it is
true initially, we must show that
0
(VD —4mo*) =
pr (V-D —4mp*) = 0.
Taking the divergence of equation (1.8.1a) we find that the condition
that
V-D = 4np*
should be true for all time is that the charge conservation law
op*

Etvij=o0 (1.8.2)
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should hold. Thus, if the conservation law for charge is obeyed, we
need only consider the first two Maxwell equations (1.8.1a) and
(1.8.1b).

The system of equations (1.8.1a—d), however, is not complete
unless the constitutive equations for D, E, B, and H are specified.
According to the various constitutive equations we have different
physical entities. If a constitutive equation is linear, then the system
becomes linear as for the electromagnetic field in a vacuum, in
isotropic homogeneous dielectric media and in crystals.

To illustrate the arguments of the previous sections we will derive
the characteristics of the Maxwell equations for homogeneous,
isotropic media and for crystals.

() ELECTROMAGNETIC WAVES IN A
HOMOGENEOUS ISOTROPIC MEDIUM

In this case we have the constitutive equations
D =¢E (1.8.3a)
B =uH (1.8.3Db)
where € and p are constant, and are called electric and magnetic
susceptibilities, respectively. In the vacuum they reduce to unity.
Introducing these equations into equations (1.8.1a,b) and making the

replacement used in equation (1.6.25'): V—>néd, 0/0t——A8, we see
immediately that the characteristic equations (1.6.25) take the form

eME+cnx8H =0 (1.8.4a)
pAH—cnxS6E = 0 (1.8.4b)

which leads to the characteristic roots
A= c?lep. (1.8.5)

Since eu is equal to the square of the refractive index n we obtain
the usual result that waves propagate with the speed ¢/n whilst,
from equations (1.8.4a,b), the jumps of the electric and magnetic
field vectors SE, SH and the unit normal of the wave front n are
mutually -orthogonal, namely, the disturbances SE and 6H are in
the plane tangential to the wave front and they are mutually
orthogonal.

We thus see that electromagnetic waves are transverse in nature,
We now illustrate in this simple example how the wave front may
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be constructed by the method of solution discussed in the previous
section.
From equation (1.8.5) we see that equation (1.7.3) takes the form

2
1 = 4{n- (%) 2= 0 (18.5)
where p is the three-dimensional vector (p,, ps, ps). Then equations
(1.7.8) become
dx c\?
(E = _(;L) P (1.8.63/)
dt
=P (1.8.6b)
ap
=0 (1.8.6c)
dp, _
r=0. (1.8.6d)

From equations (1.8.6¢,d) it follows that p and p, are constant
while equation (1.8.6a) implies that the normal velocity and
the ray velocity are in the same direction. Let us assume that
the disturbance is initially localised on a sphere of unit radius, i.e.,
that ¢(0,x,y,2) = r—1. Then p is given by p = p°® = (x/r),_, and
Po = Py by —c/n. Hence we have & —x, = (c/n)p°t. So the ray is
equivalent to a particle moving along a straight line directed normal
to the initial sphere with the velocity c/n.

Therefore the wave is the family of spheres of radius (c¢/n)¢. In
the limiting case of the point source we have of course the well-known
light cone r —(c/n)t = 0.

The method of construction by means of the normal velocity is
more straightforward since the A are not only constant but are also
independent of the normal vector n so that disturbances propagate
with the same velocity in all directions. Both the surface of normal
velocity and the wave front are the sphere of radius ¢/n. An alterna-
tive approach in electromagnetic theory is to introduce the electro-
magnetic potentials A and ¢ through equations
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with Lorentz condition V- A + (eu/c) (0¢/0t) = 0. We then have the
wave equations for A and ¢:

n\2 02 4,

(A ( )2;Z)¢ - _4—",,* (1.8.7b)

and again obtain the characteristic equation

oo

In the vacuum characterised by € = pu =1 equations (1.8.7) are
obviously invariant under the Lorentz transformation. However, in
the medium they are not invariant and we now discuss this point
briefly. For simplicity we will assume that no charge and current
exist. If we refer to a coordinate system moving in the xz-direction
with constant velocity v relative to the medium, then the space-time
coordinates transform under the Lorentz transformation with
B =v/cto

< J;B;‘z (1.8.8a)
Y=y (1.8.8b)
Z =z (1.8.8¢)
¢ tglﬁ/gf (1.8.8d)

which implies that the operator

m\2 e 1\ 2 (1—n?) o2
‘(z) aTz—A‘(@)W PR
transforms to

1\ &2 l—n2 0\?
1=\ 2)—1
A (cz) art 1-4) ( x) '
Therefore the characteristic equation in the coordinate system
moving relative to the medium becomes

(V)2 — (l)¢,/+(1 (1=B%) 2 (gp—vpy)t = 0. (1.8.9)
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The characteristic cone diverging from the origin may be obtained
as the solution to this equation, or instead it may be derived from
the equation 72— (c/n)?t? = 0 by means of the Lorentz transformation
(1.8.8); namely, omitting the primes of the space-time coordinates
we have

n2_BZ n2—1 2 9 2 nZ(l__Bz) c \2
gy () o= (1) =0

The above expression shows that at time ¢ the wave front is an
ellipsoid the centre of which is at

n2—1
x=—(m)vt, y=z=0
and with the length of the principal axis in the z-direction equal to

2(1—pB?) nct
S

Therefore, if
(1-p%)nct_ n2—-1
nZ_BZ >n2_ﬁ2lv|t’

that is,

c
| ’Ul <—,
n
the t-axis is always tnside the hypercone. On the other hand, if
c
|v|>—=,
n

that is, the speed of the observer or of the medium exceeds the velocity
of light in the medium, then the ¢-axis is always outside the hypercone
and consequently, as was mentioned at the end of the previous
section, we may expect a spatial discontinuity in steady cases.

In fact neglecting all the time derivatives in the original equation
we have the equation for a steady field whose characteristic equation

reduces to
2

1—n
(Wﬂ“‘m (vp,)2 = 0.

In two-dimensional (z, y)-space, this equation leads to the following
expression for the gradient of the discontinuity,

dy _ , [1-p°
- iA/ﬁn—l' (1.8.10)
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If an electron passes through the medium with velocity greater
than c/n then, in view of the Lorentz contraction, we may easily see
that in the coordinate system in which the medium is at rest radiation
is observed in the direction given by cos# = 1/Bn, where 0 is the angle
between the direction of the normal to the wave front and the direc-
tion of motion of the electron. This radiation was first observed by
Cerenkov and is called the Cerenkov Radiation (£1).

(¢¢) CRYSTAL OPTICS (38)

In crystals, € and p are tensors. For simplicity we here assume the
constitutive equations with u a scalar

D'i = e'iEi’ ": = 1,2, 3, oD

and
B=uH.

The Maxwell equations (1.8.1) imply
that 6D is still orthogonal to SH and n
whilst 8E is orthogonal to 6H. However,
SE is not parallel to 6D and hence 8E is not
normal to n. As aresult 8D, §E, and n are
all in the same plane and this plane is
normal to 8H (see Fig. 1.9). The charac- ) B—
teristic equation in terms of SE and 8H
takes the form

—X;8E;—c(nx$H); =0, i=1,23 "
F1c. 1.9. The relation-

(1.8.11a)  ghip between the normal to
a wave front and the jumps
—M8H+cnx86E = 0 (1.8.11b) of E, H, and D in a crystal.

or, eliminating 6H, we have
1-5E %) 8B, —nyn-8E) = 0 (1.8.11
- o =Ny =0. .. C)
The characteristic or secular equation becomes

A2[A —{cE(n} + n3) + c3(n? + n3) + c3(nd + n3)} A2

+cicini+cicini+cicin] =0 (1.8.12a)
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where c;, 7 = 1,2, 3 are defined by the equations

c
Ve

This equation may be written in terms of p,, p,, p,, and p, as

ci=

=g pt—{ 3, (P~ 21| s+ (rcuca? (S (mfec?] o] = 0.
(1.8.12b)

We may assume without loss of generality that c}>c2>c2 and
by checking the signs of the left member of equation (1.8.12a) for
A =c2, ¢}, and c2 it can easily be seen that aside from the trivial root
A =0 equation (1.8.12) admits the two positive roots A2 and A%
characterised by the inequalities

B> >cE. (1.8.13)

Namely, all the roots of equation (1.8.12a) are real and there exist
two modes of propagation specified by the velocities +A; and + A;.
We also note that equation (1.8.12a) may be given in the form

2 2
U n3

n2
s+ 2+c§_/\2=0 (1.8.12¢)

2 2 2 __
c2—A% ¢k

which is called Fresnel’s equation.

Insertion of these eigenvalues into equations (1.8.11) determines
SE, 8D, and 3H apart from parameters characterising the smallness
of the jumps. For instance, from equation (1.8.11c), 8E is given by
the relation

SE, SE, SE,

(L= (Ne®) ~ ngl(1— (Nea)®) ~ ngl(1—(Meg)?) (1.8.14a)
from which 8D is obtained as
it o oDs (1.8.14b)

nl(E—N)  nmaf(E—N2)  my/(cE—N?)

whilst 8H follows directly from equations (1.8.11b) and (1.8.14a).
We note here that the electric displacements 6D; and 8D,
corresponding, respectively, to A; and A;; are orthogonal. This can
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be proved by using equation (1.8.12¢); namely,
1(c3 =2 (] =A%)
This implies that the electromagnetic waves associated with the

normal velocities A; and Ay are linearly polarised in directions
orthogonal to each other.

3
8D;*8Dy ¢ X

Y z
A A2 “01 A1
A \
3 AN
S X " X
(a) ()
z

(b)

Inner shell

F1e. 1.10. The projection of the surface of normal speed onto (a) the
(%, y)-plane, (b) the (y, z)-plane, (c) the (x, z)-plane. 4, and 4, denote the optical
axes. (d) A picture of the surface of normal speed in space. The outer shell is
shown by the outer line without shading, while the inner shell is shown by
the shaded line. They touch at the point P.

Corresponding to the roots A; and A, there exist the two surfaces
of normal velocity. To illustrate the geometrical shape of these
surfaces we first consider the cross sections of these surfaces with the
(®,y)-, (y,2)-, and (z,x)-planes. The section by the (y,z)-plane is
obtained by setting n, equal to zero in equation (1.8.12a). One of
the A% becomes ¢ whilst the other is equal to n3c3+nZci. This may
be seen more easily from Fresnel’s equation (1.8.12¢). The root



56 1 ¢ GENERAL HYPERBOLIC EQUATIONS

A2 = 2 corresponds to a circle of radius ¢, in the (y,z2)-plane and the
root A, = n2c3+mngcd corresponds to a closed curve which is inside
the circle. Similarly, the section by the (x,y)-plane consists of the
circle 23, = ¢2 and a closed curve A2 = n}c2+mnic? which is outside
the circle. These results also imply that the normal velocities in
the z-, y-, and z-directions are given by (c,,¢3), (C3,¢), and (cy,¢y),
respectively. However, the section by the (z,z)-plane is rather
different as we now see.

F1c. 1.11. The projection of the wave front onto (a) the (x,3)-plane, (b) the
(y,2)-plane, (c) the (z,z)-plane. In all these figures, the dotted lines are the
corresponding surfaces of normal speed.

It comprises the circle A2 = ¢ and a closed curve A\* = njc}+nfc}
and these two curves intersect each other at the points

nicd+nick =ck (n3+n%=1),
thus
2 2 2 2
c2—c c2—c2
n =iA/-——1 2 ng =0 n =A/3—. (1.8.15)
1T ENgmgr Th MTNaog

In the two directions given by equation (1.8.15) the two normal
velocities become equal, their value being given by A2 = A} = c3.
These directions determine the optical axes of the crystal. From
the shapes of the cross sections illustrated in Fig. 1.10 we see that
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the surface of normal velocity consists of two shells which we call the
outer and inner shells. These touch each other in the direction of the
optical axis and consequently the inner shell is convex and the outer
shell is not.

The wave front may be constructed from the surface of normal
velocity by using the method explained at the end of the last section.
The cross sections by the coordinate planes are shown in Fig. 1.11 as
the solid curves which consist of ellipses and circles. The dotted lines
show the sections of the surfaces of normal velocity. It is obvious
that the circles of the surface of normal velocity lead to the same
circles for the wave front. For the ellipses it is easily seen that the
sections of the surface of normal velocity are always outside the
corresponding cross section of the wave front shown by the solid
lines. Corresponding to the outer and inner shells of the surface of
normal velocity we also have the outer and inner shells of the wave
front the former of which is not convex, whereas the latter is.

1.9. HYyprRODYNAMICS

As is well known (19), the basic equations of hydrodynamics
comprise the conservation laws of mass, momentum, and energy,

%—’:+V-(pv) =0 (1.9.1a)
ApY) o, + _

T—V.T— 0 (1.9.1Db)
%"'V'q =0 (1.9.10)

where p is the mass per unit volume, v (v,, v,, v3) is the flow velocity,
T(T},) is the stress tensor comprising the mechanical part and the

viscous part II(I1,), W is the total energy density, and q (¢;,9s,9s)
is the energy flow; their forms are given by the following equations:

Ty = — (P8i+ pv;vi) + Iy (1.9.2a)
R

My = C(%+£g—§8ikv-v) +08, Vv (1.9.2b)

W = 1pv2+ pe (1.9.2¢)

q= pv(%v2+e+1—£)—v: II—»VT (1.9.2d)
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where e is the internal energy per unit mass, 7' the temperature, and
{, U, and yx are the viscosity and the heat conduction coefficients,
respectively, and will be assumed to be positive constants, while
v:II denotes the diadic product,

3
(v:I0); = X Iy
k=1
Equation (1.9.1b) may be written in the form
0
p[ﬁgﬂwV)v] =—Vp+{Av+ ('+3)V(V-v). (1.9.1b)

Alternatively, in place of the energy conservation law we may
impose the thermodynamical law given in terms of the entropy S per
unit mass by the equation along each fluid element path,

Tds = de+ pd(—l—) : (1.9.3a)
P
By means of equations (1.9.1) this equation takes the form
T2 (v-V); 8= ; I %+ AT (1.9.3b)
P 3t+ _i,kzil il ok X . -9

This equation is often used instead of equation (1.9.1c) and is called
the heat equation, since the first term of the right member is the heat
produced by the viscous friction while the second term is the heat
acquired by the thermal conduction.

(¢!) COMPRESSIBLE PERFECT GAS

If the system is adiabatic and reversible so that the terms with
{, {’, and y may be neglected as small we have the following system
of equations for p, v, and S:

-a—p-l-V'(pV) =0 (1.9.4a)
ot

ov Vp

hid . = — = 1.94
ateVr=—= (1.9.4b)
%-}-(V'V)S: 0 (1.9.4¢c)

in which, in view of the equation of state, p is given in terms of p and
S; for instance, for a perfect gas p is given through the adiabatic
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exponent y (> 1) by the equation
p = A(S)p? (1.9.4d)

where 4 is a function of §. By means of (1.9.4d) the term Vp may be
written as
op
= 2 —_—
Vp =a?Vp+ 25 Vs
where a is the sound velocity and is equal to y op|op.
It is now obvious that the system of equations (1.9.4a,b,c) is
written in the matrix form (1.6.1). The characteristic equations are
most easily derived by the substitution (1.6.25’)

0
a—t—%—AS, V——>n8,
and take the form
—Xp+8(pv,) =0 (1.9.5a)
a? 10p _
—A8v+vn8v+n(—;8p+;a—888) =0 (1.9.5b)
(-A+v,)88=0 (1.9.5¢)

where v, denotes v-n. From equation (1.9.5¢) it follows directly that
one characteristic root is given by

A=w, (1.9.6a)
for which
88+#0. (1.9.6b)
Introduction of these relations into (1.9.5a,b) results in
v, =8p=0 (1.9.6¢)
8p#0 (1.9.6d)
v, # 0 (1.9.6e)

in which 8v, denotes the component of év transverse to n. Equation
(1.9.6a) implies that the velocity of the wave front is equal to the
normal component of flow velocity which is continuous across the
wave front, consequently the fluid does not cross the wave front,
whilst the transverse velocity undergoes a jump. The density and
the entropy also have jumps such that the pressure is continuous and
hence the temperature is discontinuous. Therefore, physically
speaking, a wave of this kind corresponds to the motion of a boundary
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between two thermodynamically different states, and is called a
contact surface or shear flow discontinuity.

In order to obtain the remaining roots, we now assume that
A#wv, and consequently that 88 = 0. Then, from equation (1.9.5a)
and the normal component of equation (1.9.5b) it follows that

(=A+v,)2—a%2=0, (1.9.7a)
that is,
A=v,ta (1.9.7a)
and
-S—p = v, (1.9.7b)
p ta

where the + signs in these two equations correspond, respectively,
whilst the transverse component of equation (1.9.5b) leads to

8y, =0. (1.9.7¢)

It is now clear that this mode of propagation corresponds to a sound
wave. Let us now consider a wave proceeding into a constant state
(Po> Vo, Sp)-

The wave front follows most easily from the theory of rays. Since
equation (1.9.7a) implies the following form of H,

H=(p,+v-p)i—a’p?=0,
that is,

Pot+v-praip’=0,

equations (1.7.10) become

ax —
= +a, p/y p*

where p is a constant equal to the initial value.
Hence we have
(®—vot)? = (ayt)?

which is a sphere of radius a,¢ whose centre is moving with the
velocity v,. If v, exceeds a,, then the time-axis is completely outside
the characteristic hypercone in the four-dimensional space-time,
and we may expect the existence of spatial discontinuities, the so-
called Mach wave. It should be noted also that these results follow
directly from the static case v, = 0, through the Galilean trans-
formation. In this sense a parallel can easily be seen between
Cerenkov radiation and the Mach wave. It is worth illustrating in
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this simple example the relation between the spatial discontinuity
and the surface of normal velocity. From equation (1.9.7a’), say
for the wave A = v, +a, A becomes zero for n given by the equation

cosfy = —af|v,|

where 6, is the angle between n and v,

Hence, if | vy| > a, A changes its sign as n varies beyond the direction
determined by 6, and implies the existence of a spatial discontinuity.
It is also easy to obtain the characteristic root for the steady case,
which is given by neglecting all the time derivatives in the original
equations and consequently by putting ¢, = 0. The characteristic
equation follows immediately from equation (1.9.7a) and we have

(vyn)2—a =0 or cosfy = +a,/|v,]. (1.9.8)
In order that there exist real n satisfying this equation, we must have
|vo|>ay,

at the same time the direction of the discontinuity surface is specified
by equation (1.9.8). A detailed discussion of this surface will be
given in Chapter 2. (See Section 3.9. for a more detailed discussion
of weak shock waves and rays.)

From these considerations concerning the relation between the
steady spatial discontinuity and the wave front in time dependent
propagation we may state the following general rule. When the
characteristic equation of a system does not depend explicitly on x and ¢t
and vnvolves a constant velocity v, and, moreover, the system is invariant
under the Galilean transformation, an envelope of tangential planes drawn
from the point (x = —v,) in 3-space to the wave front obtained for t = 1
and vy = 0 may be dentified with a spatial discontinuity in the steady
case for v,

(¢7) WATER WAVES

As an example of an incompressible fluid we now consider shallow
water waves. If the fluid is incompressible, and thus the density p
may be considered constant, the continuity equation (1.9.1a)

reduces to
Viv=0 (1.9.9a)
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and the momentum equation then becomes the Navier-Stokes
equation

ov 1 L

v Vy=—— 2Ay. 1.9.9b

pr +v-Vy P Vp + P v ( )

In the following argument we assume that { may be neglected

and base our subsequent presentation on that given by Stoker (39).

The behaviour of water waves may be determined from the solution

of equations (1.9.9a,b) under the boundary conditions applicable

at the sea bottom and at the water free surface (see Fig. 1.12). Let

y
‘/y=y(z,t)

I}?(x)

0 ' T
Y (z)

W%/yz -¥Y(z)

Fi1a. 1.12. The axes for water waves.

us now discuss the analytical expression of these boundary conditions.
For simplicity, all the quantities are assumed to be functions only
of z, y, and t where the y-axis is taken upward from a certain point
of the sea bed. The equation of the sea bed will be expressed as

y+Y(x)=0.

At the sea bed the normal component of the fluid velocity v, = 0,
and the unit normal n to the bottom has components n, and =, in
the ratio

Nyt My = +% : 1.
The boundary condition at the sea bed is then

uY,+v=20 at y=—Y(x) (1.9.10)
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where u and v are the z- and the y-components of the fluid velocity.
Another boundary condition is given at the free surface which may
be specified by the equation

Yy =glxt).
The boundary condition expresses the fact that a particle which is
once at the free surface will stay there for all time and so the
increment y — 7 followed by a particle is zero.
This may be expressed by the equation
d i,

d 0
7W-9=0 where Z=m vV,

that is, .
tug,—v=0 at y=9. (1.9.11)

Besides this kinematical condition we have also the dynamical
condition
p=0 at y=17. (1.9.12)

The pressure p is assumed to be given by the equation

p=gp(G-Y) (1.9.13)

which is identical with that in hydrostatics. This assumption is
essential to shallow water theory.

Equation (1.9.13) makes the equations of motion and the boundary
conditions extremely simple. Since p, is independent of y, u may be
assumed to be independent of y and consequently the x-component
of equation (1.9.9b) reduces to

U+ Uy = — G, . (1.9.14a)
On the other hand, from equation (1.9.9a), it follows that

_ 7
oy == [* wdy =@+ P,
or, by means of the boundary conditions (1.9.10) and (1.9.11), we have

G+(F+Y)u), =0. (1.9.14b)

The theory of shallow water waves is determined by the system
of equations
w4 uu, = — gy, (1.9.14a')

G+(@+Y)u),=0. (1.9.14b")
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This system of equations is often written in terms of other variables.
(a) In terms of p, the mass per unit area, and P, the force per unit
width,

p=pF+7Y) (1.9.15a)
7
P =f pdy. (1.9.15b)
-
Introducing these quantities into equation (1.9.13) we get
=7 5 15
D 25 p2. (1.9.15c¢)

This equation implies that the pressure p and the density p are
connected by the adiabatic law with y = 2. Equations (1.9.14a,b)
are written in terms of these new variables as follows:

pluy+uuy) = — P, +gpY, (1.9.16a)
p+(pu), =0. (1.9.16b)

Hence, if Y = constant (constant depth), the theory reduces
completely to isentropic gas flow with y = 2, in which the local
sound velocity a is given by

a= gf =95+ 7). (1.9.17)

(b) In terms of a, the local propagation speed, and u. From
equation (1.9.17) and equations (1.9.14) we find that

w+uu,+2aa,—H, =0 (1.9.18a)
2a,+ 2ua,+au, = 0 (1.9.18b)

with
H=g7Y. (1.9.18¢)

The system of equations (1.9.18) will be discussed further in Chapter
2, Example 4.



2

THE METHOD OF
CHARACTERISTICS

IN THE PREVIOUS CHAPTER we saw that characteristic manifolds
played an important role in wave propagation and that wave fronts
were to be identified with such manifolds. We now examine the
manner in which characteristic manifolds may be used to construct
actual solutions, thus giving rise to the method of solution known as
the method of characteristics.

The method of characteristics becomes particularly simple when
applied to systems of equations involving only two independent
variables and it will be to such systems that we now direct our
attention. The equations studied will be quasi-linear hyperbolic
first order systems involving two independent variables and n
dependent variables. Because the case of two dependent variables is
significantly simpler than that of n>2 we will begin by studying
this case and then generalise the methods to the case n > 2. Finally,
we will examine in detail the manner in which discontinuities
propagate on wave fronts and the appearance of discontinuities in a
solution, even when starting from analytic initial data.

2.1. RIEMANN INVARIANTS—
SYsTEMS witH Two DEPENDENT VARIABLES

When systems involving two independent variables are considered
the characteristic manifolds & become plane curves and simple
geometrical interpretations may be given to the results. Using the
reduction established in equation (1.5.8) and identifying x° with
the time ¢ and «! with z, the general system becomes

U+AU,+B =0 (2.1.1)

where U and B are each column vectors with two components and
4 is a (2 x 2) matrix. By equation (1.6.4) there exists a wave front

o(x,t) =0 (2.1.2)
65
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across which there occurs a transition from the disturbed state to the
steady state. When we introduce the new coordinates ¢ and ¢, where
£ is the arc length along the curve ¢ = 0, and change coordinates as
in Section 1.6, the characteristic determinant A of equation (1.6.8)
may be written

A=|Ip,+Ap,|=0. (2.1.3)
When we set
__n_d
N=—T= T (2.1.4)

equation (2.1.3) becomes
|A—M|=0. (2.1.5)

As we have already noted, when the eigenvectors of A are real
and linearly independent at all points of a domain, the system (2.1.1)
is called hyperbolic and the eigenvalues A represent the propagation
velocities of the wave front. Since A is of order two, there exist two
characteristic propagation velocities and A specifies the normal to the
characteristic curves in the (z,t)-plane. We first consider the
homogeneous case when B = 0 and equations (2.1.1) become

A = AU)
and
U+AU, =0. (2.1.6)

When we denote the left eigenvectors of A corresponding to the two
eigenvalues A1 and A® by IV and I®, respectively, then

16 4 =\ [@) (2.1.7)
and from equation (2.1.6) by pre-multiplication by I¥,
1y, =0, (2.1.8)
where U, is a directional derivative defined by
U, =U0+A00,.

The characteristic curves corresponding to A =AY and A = A® are
determined by equation (2.1.4) as

dx
(+) . =)
Ow:  Z= (2.1.9a)
and
oo E e (2.1.9b)

dt
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and will be called the C*) and C‘~) characteristics, respectively.
Let us now introduce new parameters o and 8 through the following
two equations:

B+ADB. =0 (2.1.10a)

Y+ AP, = 0. (2.1.10Db)

Then, from the first equation,

_B =D

x

If we consider a line along which B(z,t) = constant, then

B.dx+B,dt =0
and so

(fi—f =D along B(x,t) = constant.

Thus, from equations (2.1.9), we see that 8 = constant along a O+
characteristic and similarly « = constant along a C'~) characteristic.
This parameterisation is illustrated in Fig. 2.1. The parameterisation

I )

o = constant
re /3 = constant

c(&)

Fig. 2.1. Characteristic parameterisation.

o' = f(«) and B’ = g(B) where f and g are monotone functions would
again give this result leaving the characteristic equations and curves
unchanged.

If we now consider z and ¢ as functions of the « and 8 of equations
(2.1.10a,b) then, provided the Jacobian

J= O‘xﬁt_o‘tﬁx
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is non-vanishing, we have
O‘z=jtﬂ’ o = _jxﬂ
Bz = —Jta> By =jx,-

Substitution of these results in equations (2.1.10a,b) gives the
parametric representation of C*+) and C-) in terms of « and B:

CH: g~V =0 (2.1.92")
C(_): xﬂ—A(Z) tﬁ = 0. (2.1.9b’)
Two further equations may be obtained by applying the identities

0 0dud OB 0
%= a oo T 0 0B
(2.1.11)
0 0o d OB 0
9z 0z 3a | 0w OB
to equations (2.1.8) along the curves C‘* and C‘”. Along C+,
equation (2.1.8) becomes

I+ A0 T,) = 0

which, by identities (2.1.11) and the fact that B = constant along
C) | reduces to
Ny U, + AV o U) =0,
or
10 (o + AW o) = 0.

Since from equation (2.1.10b) the factor o, + AM o £ 0, this reduces to

MU, =0 along ¢+ (2.1.12a)
and, similarly,
10U, =0  along 0. (2.1.12b)

If the components of U are u, and u, and the components of IV are
19 and IV, then these equations define two families of curves I'+)
and '™ in the (u,,u,)-space corresponding to the C'*) and C
characteristics, respectively. In component notation these curves are

re: IWu, +10 Uy, =0 along Ct  (2.1.13a)
re:. P uyp+ 1P ugp =0 along C-'. (2.1.13b)
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Integration of these equations gives

f 1P duy + f I duy = r(B)  along C*) (2.1.14a)

fl{z’ du, + fl;z’ du, = s(a)  along C (2.1.14b)

where 7(8) and s(«) are integration constants and are called Riemann
invariants. Now the I{’s are functions of u, and u, and so equations
(2.1.14) may be re-written as follows:

I:  JO(uy,u,) = r(B) (2.1.15a)
re: J B (uy, uy) = (o). (2.1.15b)

Expression (2.1.15a) is valid along a curve
for which 8 = constant, i.e., along a C¥
characteristic and similarly ') is true
along a C) characteristic.

Suppose, as in Fig. 2.2, that the C+) and
C-) curves passing through a point P are
known, and that they cross the initial curve
at 4 and B, respectively. Then the values
of u, and u, at P may be determined from
equations (2.1.15) by aseribing to r(8) and
s() the values determined at points 4 and
B, respectively. Hence, if the mapping Fic. 2.2.
between the I' and the C characteristics
which can be determined from equations (2.1.10) and (2.1.13) is
obtained in simple form, the C+) characteristics can easily be
established and in this case the solution can be obtained in a concise
geometrical form.

The simplest case of this mapping is that in which one point in
the (u,, u,)-space corresponds to a domain D in the («,t)-space. This
obviously corresponds to a constant state in D. The next simplest
case is the correspondence between a line and a domain, i.e., the case
in which one line in the (u,,u,)-space corresponds to a domain § in
the («,t)-space. The domain 8 of this kind is called a simple wave
region. Consider, for example, one I'*) characteristic characterised
by 7(B) = r,. If this line corresponds to a domain § in the (x, ¢)-space,
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then, from equation (2.1.15a), everywhere in S we have the relation

JD(uy,uy) =14, (2.1.16)

or
Uy = Ug (Uy), (2.1.16")
since thisis valid along every C+) characteristic covering S. However,
along each C~) characteristic, equation (2.1.15b) is valid defining a
corresponding I'=) characteristic in the (u,, u,)-plane which intersects.
the single I'+) characteristic mapping onto S. Thus the image in the
(uy, up)-plane of a C~ characteristic in S is the single point of inter-
section of the I'+) and I'~) curves. This point corresponds to a

1 t

(D

C(’)

(U9, Upo)

Fic. 2.3. Simple waves.

unique pair of values %, and u,, and so along the C*~ characteristics
in S the values of u, and u, are constant. From equation (2.1.10b)
we see that this implies that all the C~ characteristics are straight
lines. However, these C'~) characteristics all have different gradients,
varying as a function of the parameter o and it may happen that they
intersect each other.

Since the constant values of w, and wu, carried along the C(-)
characteristics are different on different C') lines, the functions
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u, and %, become discontinuous at such intersections. This means
that the initial smooth distribution tends to a discontinuous wave
after a finite time and so the uniqueness of the solution may be
questioned.

The simple wave may be visualised if the initial functions u,, and u,,
are given so as to satisfy the relation J®)(u,q, uy,) = constant ( = ry).
Under such initial conditions, along every C‘+) characteristic issuing
from every point on the initial curve, the relation (2.1.16) is valid.
Hence we have this relationship everywhere in the region covered by
these C+) characteristics.

Moreover, we can show that the region adjacent to a constant state is
always a simple wave. This important character of simple waves
plays a fundamental role in building up solutions in wave propaga-
tion. The proof of the above statement can be seen as follows. Let
the state (I) in Fig. 2.3 be the constant state (u,q, ), then in (I) all
the C-characteristics are straight lines. If we consider the region §
adjacent to (I) covered by the C~ characteristics issuing from the
region (I), then in S we have a relation

J B uy, up) = 8,

along every C-) characteristic. The constant s, is to be determined
by u,g, us. Hence the region S is a simple wave.

We now illustrate the previous arguments by applying the methods
to the following examples.

Examples
1. Unsteady One-Dimensional Isentropic Flow. The equations of
isentropic flow in a perfect fluid in one space dimension are
ow ou  a*dp

R p 0x

ou

dp Op

wo-+

R 0

where p is the density, » the flow velocity, and the sound speed a is a
function of p. From these equations we have

oo sl
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The eigenvalues A® and the corresponding eigenvectors [*) are given
by

1w = [‘f, 1] , AV =y ta (2.1.17a)
P
a
12 = [—, —1] , A =qy—q, (2.1.17b)
P
Hence we have by equations (2.1.14)
re: u+m(p) = r(B) along C+): Z—f =u+a
(2.1.18a)
dx
re: u—m(p) = —s(a) along C): ik
(2.1.18b)
where m(p) is defined by
m(p) = f@dp. (2.1.19)

Consider a constant state (I) specified by v = 0 and m = m,. Then
the simple wave connected with (I) through the C~ characteristics
can be characterised by the condition

u—m(p) = —my. (2.1.20)
Hence, along the C*+) characteristics we have
u=}rB)—my), m=}rPB)+m). (2.1.20)

If a increases as ! increases, and r(B) is an increasing function of 8,
the slope of the C+) characteristics, w+a, is an increasing function
of B. Therefore, in the configuration such as given by Fig. 2.4, the
straight Ct) characteristics with the different values of B intersect
each other forming an envelope on which the values of w and p are
discontinuous. The two branches of the envelope meet at a point
(%, t,) and form a cusp. This cusped angular region bounded by the
two branches of the envelope is covered three times by the C‘+)
characteristics. Thus beyond the time ¢, a unique continuation of
the smooth solution is impossible. If, however, r(B8) is a decreasing
function the opposite situation may occur: the C+) characteristics
diverge for the positive ¢-direction as in Fig. 2.5. If we consider the
limit as B— 4 in Fig. 2.5, we at once see that the initial discontinuity
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at a point A will immediately be smoothed out. The simple wave
motion of this kind may be realised in a piston motion in a tube
where the piston is suddenly pulled out causing gas to expand.
Simple waves of this type are called expansion waves and have been
extensively studied (3).

At

F1c. 2.4. Discontinuity at cusp of envelope of characteristics.

A special case of a simple wave occurs when the functional depen-
dence involved is not in terms of # and ¢ but in terms only of the
ratio z/t. Such simple waves are called centred simple waves. Let
u and p be a centred simple wave in the angle a’ </t <b’, then they
may be expressed in the form

u = u(x[t)
p = plxft).
Since the values of 4 and p are constant along the lines

x[t = £ = constant,
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these lines are characteristics. This is illustrated by Fig. 2.6. Hence
u and p satisfy the relations

uta=¢
or
u—a = §

8Y

Fi1c. 2.5. Expansion wave.

corresponding, respectively, to

u—m(p) = —8,
or
u+m(p) =r,.

The above two relations for 4 and p establish the solution uniquely.
This solution demonstrates that the initial discontinuity at the
centre O is immediately smoothed out in the simple wave region.
2. Non-Linear String. The equation of motion of a non-linear
string is
P o
e S (2.1.21)
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where ¢ is an even function of ¢,. Denoting ¢, and ¢, by

Pz = Uy, Pr = Uy
and using the methods of Section 1.4, we find the equation for the
column vector U:

U+AU, =0
where
-1
U=[ Z: ] and A =[ _002 . ] (2.1.22)
At
C(*)
B ™
AN
\
\
\
\CH (D
|
! >
0 x

Fi1e. 2.6. Centred simple waves.

and ¢ = c(u,). The left eigenvectors [, I® and the corresponding
eigenvalues AV, A are given by

I =e,1], AV = —¢
(2.1.23)
12 =[e, —1], A =¢c,
Then, we have from equations (2.1.14)
m(uy) +uy = r(B) along % =—c (2.1.24a)
dx
m(u,) —uy = 8(a) along —=c (2.1.24b)

dt



76 2 ¢ THE METHOD OF CHARACTERISTICS

where m(u,) is defined by

m(uy) = f c(u,)du, . (2.1.25)

The equations are now of the same form as those in the previous
example and so will not be discussed further. It is interesting to note,
however, that (2.1.21) is precisely the form of the equation determin-
ing one-dimensional propagation of plastic deformation in solids
with ¢2 = T'/p where p is the density of the material and 7' is the
modulus of deformation. This method of solution was employed by
von Karmén and Duwez, who consider the stress wave caused by a
longitudinal impact at the end of a cylindrical bar (3, 42).

3. Steady Two-Dimensional Supersonic Flow. The equations of
steady two-dimensional irrotational isentropic flow are

Uge— Uy = 0 (2.1.26)
(@® —uf) uy, —u, uz(u1y+u2x)+(a2—u§)u2y =0 (2.1.27)

where u, and u, are the fluid velocities in the directions of the z- and
y-axes, respectively, and a is a known function of »? + 2. In matrix
form these equations may be written

A4,U,+4,U,=0 (2.1.28)
where
0 1 -1 0
4= [az—uf — Uy Uy ] ’ Az = [ —uyuy, a—uj ] ’
and U= [ “ ] . (2.1.29)
Ug

For convenience we reduce this to the form
U,+AU, =0 (2.1.30)

by pre-multiplying equation (2.1.28) by A;! which exists provided
a?—u?+#£0. A is then given by

—2u,uy, a?—ud
A=]| a®—ud a?—u?|. (2.1.31)

-1 0
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The characteristic determinant associated with matrix (2.1.31) is

—2uyu, , @*—u ]
a? —u? a®—u} | =9
-1 -2
or
ey Zatey GU (2.1.32)

2 _ 2 2 _ 2
a?—u?  a’—u}

The roots A®® are then given by

[—u, up + aJu +uZ—a?] (2.1.33)

where 7 = 1 is associated with the positive sign and ¢ = 2 with the
negative sign. The roots A® are real, thus ensuring that the equations
(2.1.26) and (2.1.27) are hyperbolic, provided

ui+ui—a?>0. (2.1.34)

A —

2 2
a?—u?

Since a is the sound speed of the medium and ¢% = u} + u3 is the square
of the fluid velocity q = u, e, +u, e,, where e, and e, are unit vectors
parallel to the z- and y-axes, respectively, equation (2.1.34) ensures
that the flow is supersonic. In supersonic flow the characteristics in
the (z,y)-plane determined by the equations

Y _ “hoi—
de = A with:=1,2, (2.1.35)

are called Mach lines. These characteristics or Mach lines can be
obtained provided the matrix 47! is non-singular which is simply that

| A,]|#0, or a?—uf#0.
The local Mach number M is defined as
M =gla (2.1.36)

where ¢ = u2 + u2 and so the condition that A7 is singular is simply
that u, = a, i.e., that the z-component of fluid velocity equals the
local sound speed. Had equation (2.1.28) been solved for U, instead
of U, we would have required the condition that 4, was singular
which is just that u, = a. Consequently, since the z- and y-axes are
arbitrary, by rotating them about a point O we may find a position
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y'Oz’ in Fig. 2.7 where the z-component of velocity ¢ becomes equal
to the local sound velocity a. The Oy’-axis then makes an angle «,
known as the Mach angle, with the fluid velocity vector q defined by

(2.1.37)

I’

Fic. 2.7. Characteristics C'*) and C{-) and the Mach angle.

Rotating the axes to position y"Ox" gives the condition that in the
new frame of reference u, = a, and now the Oz"-axis and the fluid
velocity ¢ intersect at the Mach angle «. The two infinitesimal
elements of the curves C+) and C‘- that pass through O and are
tangential to Oz” and Oy’, respectively, are then part of the two
characteristics passing through O. This follows directly from their
construction since they are lines across which a solution cannot be
continued and so by the definition of Chapter 1 are seen to be
elements of characteristic curves. We see at once that the fluid
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velocity normal to the characteristic curves C+) and C-) is the local
sound velocity a.

Returning now to definition (2.1.31) we find that the left eigen-
vectors corresponding to the A and A® of equation (2.1.33) are

IO = [1,A®]  and 1@ = [1,A®], (2.1.38)

From equations (2.1.13) we see that the characteristics in the
(uy, ug)-plane are
FH: oy + APy, =0 (2.1.39)
and
T uy+ Ay, = 0. (2.1.40)

In terms of the parameters « and 8 of equations (2.1.39) and (2.1.40)
we may write equations (2.1.35) in the form

CH: oy, —NVg =0 (2.1.41)
Cc) Ypg—APa,=0. (2.1.42)
Combination of equations (2.1.39) and (2.1.42) results in the equation
du, _ _dy
du,  dx’
which may be written
dy du,
= _—2=-1. 2.1.43
dx du, ( )

Equations (2.1.40) and (2.1.41) also lead to this same result. The
left-hand side of equation (2.1.43) is simply the product of the
gradients of opposite kinds of characteristics in the (z,y)- and
(4, uy)-planes, respectively. From elementary coordinate geometry,
equation (2.1.43) may be recognised as the condition that two curves
in the (x,y)- and (u,,u,)-planes when represented in the same
coordinate plane should be orthogonal at a point. Thus it follows
from this result that represented in the same coordinate plane, the
CH) and T'2) characteristics are mutually orthogonal, as are the
C) and the I'*+) characteristics.

We note here that equations (2.1.26) and (2.1.27) are of a special
form. In terms of the general matrix representation (2.1.1) they
may be classified as homogeneous equations (i.e., B = 0) where the
coefficients of 4 are functions only of U. Equations of this type are
called reducible. This name originates from the fact that by inter-
changing the dependent and independent variables the system is
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reduced to a linear system in the new independent variables u, and
u,. This transformation is possible provided that the Jacobian,

J = Upgp Ugy — Upy Ugy s

is not equal to zero when it follows at once that

Uiy =.7yu,
Ugy = jxu,
Ugg = —Jyu,
Upy = —Joy, .

This transformation is known as the hodograph transformation and is
discussed in detail in the book by Courant and Friedrichs (3).

4. Water Waves in Shallow Water. It is shown in studies on water
waves (39) and in Section 1.9(ii) that the equations appropriate to
long waves in shallow water and relating the horizontal fluid velocity
component u, the local speed of propagation of disturbances ¢, and
the depth of the bottom Y (x) measured from an arbitrary horizontal
datumn line are

u+uu, +2cc,—H, =0 (2.1.44)
2¢,4+ 2uc, +cu, =0 (2.1.45)
with
H=gY(x). (2.1.46)
These equations will be written
U+AU, = B (2.1.47)
where
u H, w2
v=[v]. B=[T%] e 4=, ol
(2.1.48)
The characteristic determinant associated with 4 is
u—A 2
c/2 w—A| 0
or
(w—A2—c2=0. (2.1.49)

Thus the eigenvalues A" and A® and the corresponding left eigen-
vectors IV and I® are
AV =wute; 1D =]1,2]
and (2.1.50)
A =y—c; @ =11, -2].
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Thus the C*) and C‘- characteristics are determined by equations
(2.1.50) as

dx
) - >
(0152 7 u+c
(2.1.51)
dx
(=) — = —_
Cc 7 U—c.

Multiplication of equation (2.1.47) by I (¢ = 1,2) gives the two
equations

0 0
il - =
(at+)\ 3x) (u+2c) = H, alongC

(2.1.52)
0 0
T2 2 ) (u—2¢) = =)
(3t+)‘ 3x) (u—2¢) = H, along C-).

We recognise the two differential expressions in equations (2.1.52) as
directional derivatives of (u+ 2¢) and (u — 2¢) along the C*) and C¢-)
characteristics, respectively. In general the right-hand sides of
equations (2.1.52) are non-zero functions of z. Two special cases
occur when the solution becomes particularly simple. For shallow
water of constant depth, Y(x) appearing in equation (2.1.46) is a
constant and so H,=0. Equations (2.1.52) then describe the familiar
simple wave already studied earlier, since the equations become
homogeneous. If the bottom has a constant slope, then Y (z) = y,+ mz,
and so H, = mg = n, say, and equations (2.1.52) may be written

(£+)\‘1’ i) (u+2c—mnt) =0 along C¥

ot ox
and (2.1.53)
0 , 0
@ L) (u—2c—nt) = =)
(at+?\ )Bx) (u—2c—mnt) =0 along C=),

Thus, the expressions (u+ 2¢ —nt) and (4 — 2¢ — nt) are constant along
the C+) and C-) characteristics, respectively. The constant values
assumed by these functions along the C*) and C‘-) characteristics
are determined by the values they assume at points of intersection
of the characteristics with a non-characteristic initial curve ¢ =0
along which the initial data are specified.

5. Electrical Transmission Line. A simple and interesting example
occurs in the linear theory of electrical transmission lines. For the
purpose of this example we idealise the transmission line comprising
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two parallel wires by considering that all the circuit parameters are
distributed uniformly along the line. We assume that the parameters
per unit length of the transmission line are C the capacitance, L the
inductance, G the leakage through conduction, and 2R the resistance.
In terms of these parameters the equations connecting the current i

and the voltage v are
Li,+v,+Ri=0

(2.1.54)
Cvt+iz+G'U = O.
In matrix form these become
A, U+A,U,+4,U =0 (2.1.55)
where
) L o 01
B T ) B i €
and
R 0
a-[® 0]
Pre-multiplication of equation (2.1.55) by Ag?! gives
U+AU,+BU =0 (2.1.56)
where
[ o 1/L _[RIL o0
A_[I/C 0 ] and B‘[ 0o @]
The characteristic determinant | 4 —AJ| = 0 becomes
-\ 1/L
e -a|=%
or A = 1/LC, and so the eigenvalues are
A = 1
VvLC
and (2.1.57)
-1
AR = __— .
JLC
The velocities of propagation of the two waves are then
dx
=\ (+)
7 AL C
and (2.1.58)
dx

22 =@ =)
7 @) c .
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The corresponding left eigenvectors IV and I® of A4 are
I =[L/C,1] and 1® =[L/C,—1].

For the specially simple case R = G = 0, equation (2.1.56) become
homogeneous and so from equations (2.1.14) the Riemann invariants

are

VLICi+u = r(B) along C

and (2.1.59)

VLICi—v = s(a) along C-).

The discussion of the solution in this case then proceeds as before.
However, in general R and G are non-zero and the equations
corresponding to (2.1.13) which are obtained by pre-multiplication
of equation (2.1.56) by I‘) and I® are

L. R2. G ]

Zgtv,=—| i+ v along CH 2.1.60a
Joirn=-|Jigiver]  sonso oo
A/ziﬂ—vﬁ—[ /Ei—gv] along C-).  (2.1.60b)

C .c C

In general these equations are not integrable in simple form but a
special integrable case does exist which is physically interesting.

Let us suppose that
R A/Z _a. 1
LO'NC C°

R @G
7= (2.1.61)

and hence that

ok

Then equations (2.1.60a,b) become

L, __8( L, +)
(A/EH-v)a = O(A/_C_z+v) along C (2.1.62a)

L. G( L. ) _
Zi—v) =—=| [Zi—v along C) ., 2.1.62b
(A/C’t )p c C’l 8 ( )

These equations are immediately integrable to give

Jgi+v = A(B)e~G¥C along C
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and _
A/gi—v = B(a)e~GAIC along C-) |

and so

v = 1[4 (B)e~%/C — B(a) e~GA/C] (2.1.63a)
and _

A/gi = 4[A(B) e=C*/C + B(a)e~CFIC], (2.1.63Db)

Now,

t—A—ﬁ—) = constant along C‘+
and

¢ = constant along C-),

x
e
but we also know that 8 = constant along C*+) and « = constant along
C) and so we may identify B with t—x/A" and « with ¢ —2z/A®
to obtain .

B=t—aLC (2.1.64a)

a=t+zVLC. (2.1.64b)

So, finally, using equations (2.1.64) in equations (2.1.63) and removing
the common factor e—2¢%C we may write

v = e"26UC[f(t — xLC) — g(t + 2V LC)] (2.1.65a)

A/ -Ofi i = e 2UC[f(t—xLC) +g(t+xVLC)].  (2.1.65b)

This shows the important fact that when the condition

R G

L ¢

is satisfied in the transmission line the waveforms (f—g) and (f+g)

of the voltage and current, respectively, then propagate undistorted

apart from the time attenuating factor e~26%C which is common to both

waveforms. Were condition (2.1.61) not to be satisfied the original
shape of the waveforms would also suffer distortion.

The special case when equations (2.1.1) are homogeneous which

has been our main interest here has demonstrated by example that

even for analytic initial data a smooth solution is in general only

(2.1.61)
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possible for a finite time. The situation in the case of a non-
homogeneous system, as typified by Example 4 above, is more
complicated and in general a smooth solution cannot be expected to
exist for all time. However, the existence of solutions in the small
has been established by Lax (21) who also extended the result to
allow for Lipschitz continuous data as has already been mentioned
in Section 1.4.

2.2. GENERALISED RIEMANN INVARIANTS—
SYSTEM WITH 7 DEPENDENT VARIABLES

In the previous section we saw that Riemann invariants could be
introduced in simple wave regions for reducible equations involving
two dependent variables. It is reasonable to enquire whether this
useful method of solution has a direct analogue in the case of vectors
U with n components. The quasi-linear system we now study is, by
analogy with equation (2.1.6),

U+ AU, = 0 (2.2.1)

where U is a column vector with n components and 4 = 4(U) is an
(nxn) matrix with real distinct eigenvalues (i.e., the system is
hyperbolic). If we assume a Riemann invariant J exists, and is
constant along a characteristic, it follows as in equations (2.1.12) that

J+2ZJ, =0 (2.2.2)

where Z(u,,u,, ...,u,) i8 the generalised slope of the characteristic
analogous to A. In terms of the variables u; equations (2.2.2) may

be re-written
b o g n O dw

i=1 aui 3t k=1 auk ax - (2.2.3)

If such an invariant J exists it should be possible to transform
equation (2.2.1) into equation (2.2.3) by pre-multiplying by a row
vector C with components c,,¢c,, ...,c, to obtain

CU+CAU, = 0. (2.2.4)
Identification of equations (2.2.3) and (2.2.4) gives
oJ

L=, =1,2,...,n, 2.
¢; o, ) n (2.2.5)
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and
r oJ
Qg =7 — 2.2.6
i§=:10‘ 27" Z auk ( )
where the a;;, are the elements of A. By virtue of equation (2.2.5)
this last result becomes

n
E C,i aik = ch . (2.2.7)
i=1

Since, from equation (2.2.5),

ey _ ey (2.2.8)

ouy,  Ouy
it follows that equation (2.2.5) is equivalent to a set of conditions
equal in number to the number of equations implied by (2.2.8). When
we omit the identities and allow for symmetries, equations (2.2.8)
comprise 4n(n — 1) conditions. The n homogeneous equations (2.2.7)
amount to a further (n — 1) conditions since one of the quantities c;
may be eliminated from the system and thus the n quantities ¢; must
satisfy a total of 1(n—1)(n +2) conditions. Apart from specml cases
this is in general 1mpossuble unless n = 2 and so a Riemann invariant
of a type strictly analogous to the one discussed in Section 2.1 cannot
exist.

Since a generalisation of simple wave properties is desirable, a
somewhat weaker condition than equation (2.2.2) similar to that
defining ordinary simple waves will be used. Analogous to equation
(2.1.16') let us examine a generalisation of simple waves in which the
quantities u; are all functions of one variable, say u,, when

u; = uy(u,) . (2.2.9)

If in equation (2.2.1) the differentiation is performed with respect
to the new variable u, the equation becomes

uy Uy, +u,, AU, =0 (2.2.10)
and the condition for these equations to be consistent is
|uyl +u,, 4] =0. (2.2.11)
Differentiating along a curve of constant u, we find that
1 414 21y

ot ox
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80
dx ou, [Oou;

at = af o "
From equations (2.2.10) and (2.2.12) we find that provided du,/dx # 0,
[A—pl]dU =0 (2.2.13)

(say). (2.2.12)

when the condition for consistency, (2.2.11), becomes
|[A—pl|=0. (2.2.14)

Equation (2.2.14) is a determinant of order # and, since it is identical
with the characteristic determinant of the system (2.2.1), has by
hypothesis n distinct roots p®, u®,...,u™. When u, is constant it
follows from equation (2.2.9) that all the u, are constant. However,
w is equal to one of the eigenvalues of equation (2.2.14) which, since
A = A(U), is determined as a function of u,, u,,..., u,, and therefore
@ becomes constant along the curve u, = constant. Accordingly,
from equation (2.2.12) the curve p = constant becomes a straight
line. Thus a point in the space of functions u,, 4,,..., %, corresponds
toa constant-state line in the (z,t)-space. There will thus be n different
simple wave solutions, each determined by one of the » roots
p,uw® 0 u of equation (2.2.14).

For the simple wave corresponding to u = u®, called by Lax (23)
a kth stmple wave, we have from equation (2.2.13)

[A—p®I)dU = 0. (2.2.15)

This comprises n ordinary first order differential equations which may
be integrated and used in conjunction with the initial conditions of
the problem to obtain simple wave solutions. Of these n homogeneous
equations only n—1 can be linearly independent and they form a
family of kth Riemann invariantst all of which are constant across a
simple wave. It is obvious that of the n such families of these
invariants, only one describes a simple wave solution.

Let usnow look at the generalised kth Riemann invariants. We take
as the starting point equation (2.2.15) and note that corresponding
to the eigenvalue v there is a right eigenvector r to 4 with components
71,79, -+, T, such that

[A—vIlr=0 (2.2.16)

1 Possible confusion over the k in this notation can be avoided by speaking
instead of u'® simple waves and u'*) Riemann invariants.
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where v satisfies the equation
|[A—vI|=0. (2.2.17)

The kth right eigenvector r** with components r%, rg) ... rik)
corresponding to the eigenvalue v¥) is, from equation (2.2.16),

[A—p®]rk) =0, (2.2.18)
Clearly v'®) = pt®) = A® for all k and, as was remarked before, only
one value of u, say u'®), describes a particular kth simple wave and so
from equations (2.2.15) and (2.2.18) since p® = p*)

du, du,  _ du,

au, _ Uy 0%y tant) . 2.2.19
o = b g a (constant) ( )

These equations describe the kth simple wave solution and we may use
them to determine the kth Riemann invariants. Let us define a
generalised kth Riemann invariant J® (u,,u,, ...,u,) = b (constant) and
use equations (2.2.19) to determine its properties and form. The
expression J* defines a surface in the n-dimensional dependent
variable space and differentiating J*) in this surface results in the

expression

J (k) J k) J (k)
3_3@? u1+é’—u2du2+...+%u—dun=0. (2.2.20)
n

However, from equation (2.2.19) and the relation du; = ar{¥), this

becomes
2T &) o k) oJ k)
(e ) 44— rl =0, 2.2.21
aul (4} + Uy Ty + + U, Tn ( )
or, using the operator V which acts on the dependent variables
Uy, Ug, ..., Uy, €quation (2.2.21) can be written more concisely in the

form

VJ ) . pk) = (2.2.22)

which was used by Lax as the definition of kth Riemann invariants
from which property (2.2.9) was deduced. The dependent variable
space is n-dimensional and since the gradient of J* is orthogonal to
r) it follows that there exist exactly (n—1) linearly independent kth
Riemann invariants with this property.

As a direct consequence of equation (2.2.12) we saw that the
characteristics corresponding to p =A%) in a kth simple wave are
straight lines along which the solution ., u,,...,u, 18 constant. In
Chapter 1 we saw that characteristic manifolds were surfaces across
which discontinuities in the solution could take place. As a direct
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consequence of this it follows that a constant state in the (x,t)-plane
s bounded by characteristic curves. For the reasons which will become
apparent when studying equations (2.3.17), the direction field
determined by the ordered number pair (A%*), —1) will be called the
kth characteristic field.

Let us now examine the solution adjacent to a constant state and
in doing so follow the proof given by Friedrichs (11,23). By virtue
of our previous result the constant state region will be bounded by a
characteristic curve C specified by A*) say. In characteristic form
equations (2.2.1) become

U, =0, j=12,...,n, (2.2.23)
where I is the jth left eigenvector corresponding to the eigenvalue
A9 of A and U signifies differentiation of U in the jth characteristic
direction

Y (2.2.24)

ot ox
As before we denote the (n— 1) independent kth Riemann invariants
by JW, J® . J® 1 and note that the left and right eigenvectors
of A are biorthogonal, whence

19 ) = 0 for j#k.
From our alternative definition of kth Riemann invariants, equation
(2.2.22), we see that the gradients of (n— 1) independent invariants
are orthogonal to r¥). In the language of linear vector spaces the
invariants span the orthogonal complement of r*). We may thus
express the vectors 1Y), j#k, as linear combinations of the J® as
follows:

U,i=

-1
19 =S b, VI®,  jEk.

s=1

Equation (2.2.23) becomes
S b, VIO T, = 0
which reduces to =
gb,.s.]};) —0, j#k.

This equation is a linear hyperbolic system of (n—1) equations for
the functions J,J @, ..., J®-V and for a given solution U has known
coefficients b;,. Since j#k the curve C is no longer a characteristic
curve of this new system and so there exists a unique smooth
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solution which may be continued across C. However, since the
solution on one side of C was a constant state solution, it follows at
once that all the kth Riemann invariants on the other side of C are
constant. By our earlier work we see that this implies that the
solution adjacent to a constant state is a simple wave.

We have seen that it is possible to express the directional
derivatives of U, occurring in the first (n—1) equations (2.2.23), in
terms of the directional derivatives of J, J@ .  J»=1_ A special
case occurs when the slope A of the nth characteristic field is
expressible as a function of z,¢,JU,J@ . J-1_ The system of
equations (2.2.1) for which this property is true is said to be exceptional
with respect to the nth characteristic field. In the event that this is
true for every A the system is said to be completely exceptional.

The condition for an exceptional system may be written more
concisely if we make use of the properties of the generalised Riemann
invariants which have already been discussed. If e; (: = 1,2,...,7n)

are unit vectors along u,,u,, ..., u,, then

n n—1 pr(n) g J(m)

(n) — —_— e,
VA= Z E T g, O
or
N n—1 3A(n)
RSP S

where J™ are the generalised Riemann invariants corresponding to
A®™. Thus VA™ is a linear combination of the generalised Riemann
invariants J1,J®, .. J®-1D corresponding to A™. By the alterna-
tive definition of these generalised invariants (2.2.22), it follows
directly by post-multiplying VA® by ), the right eigenvector with
eigenvalue A", that

VAR . p(m) = (.

We may thus re-phrase our definition as follows:
A system of equations (2.2.1) is exceptional with respect to the
nth characteristic field if

VA®) ) = 0, (2.2.25)

Later in this chapter when we study the propagation of discon-
tinuities on wave fronts this condition will have important conse-
quences, since it is in fact the condition for the propagation of finite
discontinuities in the nth mode of propagation.
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The kth characteristic field of the system of equations (2.2.1) is
called genuinely non-linear if

(VA®) .0 20 for all U.

Finally, as a generalisation of the centred simple wave in gas
dynamics, we mention simple waves centred at the origin which
depend only on z/t. We consider that A%®) is constant and assume that
VAR .¢k) and consequently that r*® can be normalised by the
equation

VAR ) — ] .

Since U is supposed to be centred,
U(z,t) = h(z/t)
where - must be determined by
J¥)(h) = constant, s=1,2,....,n—1, (2.2.22")

for the (n— 1) Riemann invariants associated with r®.
By the property of simple waves already discussed it follows that
the lines x/t = ¢ = constant are characteristics. Therefore % satisfies

the equation
AB(h(€)) = €.

This equation together with equations (2.2.22’) constitutes a system
of n equations for the n unknowns hy, ks, ..., h, and, because of the
normalisation condition and equations (2.2.22), & can be uniquely
determined. If the region of the centred wave is given by b>z/t>a
and is connected with the constant states U, and U, for x/t>b and
x[t <a respectively, then these constant states are subject to the
restriction that they have the same kth Riemann invariants and

}\(k)(U'I) <A(k)([/;) .

Examples

1. Unsteady One-Dimensional Isentropic Flow. As a first example
we will apply the theory of generalised kth Riemann invariants to
Example 1 of the previous section and show that it results in the
same solution. As before the equations may be written

U+AU, =0 (2.2.26)

o[y 2] o]

where
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The eigenvalues A") and A® and the corresponding right eigenvectors
r and r® of 4 are

AV =y 4a, A®) =y —qa
r = [ 1 ] and r@ = [ ! ] . (2.2.27)
alp —alp

From equations (2.2.19) we see that corresponding to () there is a
single invariant determined by the equation

dp  du

1 (ap)
which, when integrated, gives

u— f(g) dp = constant . (2.2.28)
P
Similarly, r® results in the equation
u+ f(%) dp = constant . (2.2.29)

These two invariants agree with those found previously.

2. Unsteady Omne-Dimensional Compressible Flow. Equations
(1.8.21), (1.8.22), and (1.8.23) when applied to one-spatial dimension
become

op Op Ou

W+ua+P%_0 (2.2.30)
ou ou 10p
e R S 2.2.31
3t+u3x+p ox 0 (2.2.31)
oS a8
XD WP 0. 2.2.32
T = O (2.2.32)

Using the result that p = p(p,S) and so p, = p,ps+psS,; We may
write these equations in matrix form as

U+AU, =0 (2.2.33)
where
P w p O
U=| u and  A=| p/p u pslp
S 0 0 u

(2.2.34)
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The eigenvalues are given by

|A—X| =0 (2.2.35)
and so the characteristic determinant (2.2.35) becomes
(w=X)[(w=A)2—p,] = 0. (2.2.36)
This has roots
AV =g
A® = uiyp, (2.2.37)
and -
AO = u—p.
Since dp/dp = a? where a is the local sound speed, this becomes
A =g
A =u+a (2.2.38)
and
AB) = y—a.

Corresponding to these three eigenvalues there are three right
eigenvectors

Ps P P
rd) = 0 ) =\ a |, and r® = —a
—D, 0 0
(2.2.39)
Substituting the components of 7V and U into equations (2.2.19) gives
dp _ du _ds
ps 0 p,

which results in the pair of generalised Riemann invariants
u = constant and p = constant. Similarly, r® gives rise to the
equations

dp _du dS

P a 0

The pair of generalised Riemann invariants are in this case
S = constant and wu—f(a/p)dp = constant, and the third
right eigenvector r® gives as invariants S = constant and
u+ [(a/p)dp = constant.
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2.3. Mixep BOUNDARY AND INITIAL VALUE
ProBLEMS

We have seen that for a general system of equations in the two
independent variables x and ¢

U+AU,+BU+C=0 (2.3.1)

with U an (n x 1) column vector the n eigenvalues are determined
by the characteristic determinant

|[A—M|=0. (2.3.2)

For a totally hyperbolic system the n eigenvalues A® A2, A" of
equation (2.3.2) are real and distinct and define » characteristic
curves C%, ¢ =1,2,...,n, through the equations

, dx ,
(1) . padad Y (7] ) = .9
cw ., 7 A 1=1,2,...,n. (2.3.3)

The ideas of space-like and time-like curves in the (z,¢)-plane already
introduced in connection with a second order equation may easily be
extended to systems of equations of this type. We recall that at each
point of a space-like curve I', all the characteristics radiate out on
the same side of I" with increasing time. Considering a specific point
P on a given curve we will assume that the eigenvalues AV, A2, . AM
at that point are arranged algebraically in order of increasing size so

that
AD <A@ < <A (2.3.4)

From this ordering and equations (2.3.3) we see at once that all the
characteristics are contained between the two characteristics C*) and
C™ and that they all radiate out with increasing time. Conversely,
a time-like curve I' has characteristic radiating out on either side of
it with increasing time. We illustrate space-like and time-like curves
I’ in Figs. 2.8a,b, respectively, and note that it is customary in the
(x,t)-plane to use t as ordinate and x as abscissa with the consequence
that C'*) then becomes the top characteristic in the figures. Consider-
ing Fig. 2.8b we see that any arc I" passing through P is time-like if
its gradient lies between the gradients of CV and C™. This condition
is easily seen to be equivalent to the inequality

dx
1) o~ (n)
A < at <A .
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We re-write this inequality in the following form and say that a
displacement (dz, dt) is time-like if

0 <(fl—:;—)\‘“ <A — A (2.3.5)
At ﬂkt
cln-1
¢
0 Z 0 z
(@) (b)
Fic. 2.8. (a) Space-like I'. (b) Time-like I'.
Similarly, we say that a displacement (dz,dt) is space-like if
A — ) <(jl—::—)\‘“ <0. (2.3.6)

To clarify ideas we may consider the very simple example of unsteady
one-dimensional flow. The eigenvalues were seen to be [equation
(2.1.17)] v+a and u—a, and re-ordering them algebraically to suit
equation (2.3.4) we write

A =qy—q and AW =u+ta.
Equations (2.3.5) and (2.3.6) then become
for (dx,dt) time-like,

<a (2.3.7)

@ _,
dt
for (dx, dt) space-like,

dx
Iﬁ—u >a. (2.3.8)
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We note that for time-like displacements |dx/dt —u| is subsonic and
for space-like displacements |dx/dt —u| is supersonic.

Since, in general, the initial and boundary conditions for a system
of equations are specified on an arc with space-like and time-like
parts we must now examine the manner in which data may be
specified on these space-like arcs. To simplify the problem we first
consider a linear system of equations with constant coefficients and
then indicate how the result may be generalised to a quasi-linear
system. We start then by considering the linear constant coefficient
system of » equations

U=AU,+B (2.3.9)
with the initial conditions

Ul(z,0) = f(x) for z; <z <x,, (2.3.10)

and space-like conditions to be discussed along the space-like arcs I'y
and I';, We will seek to determine the form of the conditions to be

specified along I'; and T, in order
pt that a solution should exist and be
unique in the domain D of Fig. 2.9.
By choosing a diagonalising matrix
T, such that T AT =D is a

'/ / / diagonal matrix, and making the
h b n variable change U = T'V, equations
// (2.3.9) are reduced to the convenient

z z, z

form
V=DV +C. (2.3.11)

0
By analogy with equations (2.3.1)

Fic. 2.9. Space-like arcs I'; and  and (2.3.2) the characteristic deter-
T', and the initial interval. . .
minant 1s

A=|D-M|=0 (2.3.12)

but, because of the form in which equation (2.3.11) is written,
equations (2.3.3) determining the n characteristic C* curves become

cw; dz = — @), 1=1,2,...,n, (2.3.13)
dt
where AL A@ A gre the characteristic roots of A =0 and

obviously the ith element of the diagonal of D equals A, For our
very simple system of equations (2.3.9) the A} are constants and so
the n characteristic curves are all straight lines.
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Constructing these n characteristic curves through the point
(z1,0) we find that r, of them lie to the right of I'; with respect to
increasing time and so lie in D, whilst the remaining » —r, lie outside
D. Similarly, at (x,,0) there are r, characteristics to the left of
I’y and n —r, excluded from D. A possible configuration is shown in

xX. z
! (a) 2

Fic. 2.10.

Fig. 2.10 for the case n = 5. In Fig. 2.10a the five characteristics
are shown through a typical point P of the domain D and, because
the system is linear with constant coefficients, the five characteristics
through any other point @ are obtained by translating to ¢ without
rotation the characteristic net through P. Thus, in Fig. 2.10b, we see
that constructing this net through the end points (z,,0) and (x,, 0)
of the initial interval gives r, = 3 and r, = 2, respectively.

Let us now consider Figs. 2.10b,c and order the characteristics so
that the first r; eigenvalues AV A@ ... A" correspond to the r,
characteristics entering D to the right of I';. The eigenvalues
Anth xnt2) X\ then correspond to the n—r; characteristics
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which lie outside D. An examination of Fig. 2.10¢ shows an important
property of the system of equations (2.3.11).

If the m—r, characteristics corresponding to the -eigenvalues
AntD Ant2) ) qre traced backwards in time and are nowhere
tangent to Iy, then the points of intersection P; of these characteristics
with the boundary of D lie only on the initial interval x, <x<x, or
on I'y and do not lie on T.

A corresponding result applies with respect to I'y. Using a rather
more careful argument it is a straightforward matter to establish
this result for semi-linear systems of equations where the character-
istics are no longer simple straight lines. For quasi-linear systems
the result can of course only be enforced locally since the non-
tangency condition imposed on I'; and T, can be asserted only in
the small about the points (z,,0) and (,, 0) of the initial line.

Returning now to equation (2.3.11) we re-write it in the form

DV,—V,=-C (2.3.14)

and seek to interpret the left-hand side in terms of characteristics.
Denoting the ith components of the column vectors V and C by v;
and c;, respectively, the sth equation of the system (2.3.14) becomes

i s _ 9

ox ot
where, in general, ¢; = ¢;(, ¢, v,,%,, ...,v,). Using the parameterisation
x = z(0), t = t(c) we have v,(x,t) = v,(z(c),t(c)) and so

dv, _ vy do oo, dt
do  Ox do’ 0Ot do’

Identifying this expression with the left-hand side of equation
(2.3.15) and comparing terms gives

v, _

do
and the ¢th characteristic curve C¥ is given parametrically by the
equations

—¢; (2.3.15)

—¢;, (2.3.16)

. dx )
(l): =\ _—= — ) = 1 2,..., )
¢ do Y, do L b ’ "

(2.3.17)

defining the ¢th characteristic field. Let P be any point in the domain
D. Then passing through P there are n characteristic curves
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C% (i =1,2,...,n), determined by equations (2.3.17) and the coordi-
nates of P. Tracing these characteristic curves backwards in time they
will define n points P;, the points of intersection of the curves C¥,
and the boundary of D. Integrating equation (2.3.16) along C®
between the points P and P; we obtain
P
v,(P) = vi(P§)+f c;(x(a),t(a), vy, vy, ..., v,) do (2.3.18)
i
where because the v,,v,,...,v, appearing in the integrand are
integrated along C® they are also functions of o.

The n integral equations (2.3.18) thus connect the initial values
and the boundary values with the value of V at a general point P of
D. We have seen earlier when examining the existence of a domain
of dependence that provided, for equations (2.3.18), the domain of
dependence of P lies within the initial interval x; <x <, then
the specification of Cauchy data on this interval (i.e., v,,v,,...,v,)
ensures a unique solution to these equations. If, however, P is not
such a point, then characteristics through P will intersect the space-
like curves I'; and I', as well as the initial interval.

Consider a space-like arc I'; such that at the point (,,0) r,
characteristics associated with the variables v,,v,,...,v, enter D
(cf. Fig. 2.10b). Then, for points P with domain of dependence not
included in the initial interval z; <z <,, there will, by the result
just proved, be n —r; points P; on z, < x <z, and I'; and thus r, points
P, onT;.

An inspection of the integral equations suggests that suitable
boundary conditions along the space-like curve I'; would be the
specification of the boundary values of the r, functions v;,v,, ...,,.
A similar result holds of course for I', and if 7, characteristics enter D
from the point (,,0) (cf. Fig. 2.10b), then r, functional boundary
values v; must be specified along T',.

That these conditions lead to the existence of a unique solution
follows directly by applying our theorem on contraction mappings
established in Chapter 1. To do this we define the mapping .# by

Yimtl) — g yim (2.3.19)

where, for the ith component of V,

P
vt (P) = v{™(P;) +j ci(x(a), t(c), vi™, vim, ..., vi™) da,
Py
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and V| the first iterate, satisfies the mixed initial and boundary
conditions previously suggested. It is not difficult to show that the
mapping # is contracting and thus that there exists a unique
solution satisfying these boundary conditions (20, 21).

By a slightly more complicated argument involving essentially
the same ideas, we may show that the specification of these r,
boundary values v,,v,,...,v, along I'; may be replaced by r, more
general functional relationships among v,, v,, ..., v, such that they may
be solved explicitly for v;,v,,...,v, along I';, and similarly for I',.

2.4. PROPAGATION OF DISCONTINUITIES
ALONG WAVE FRONTS

Let us consider the general hyperbolic system
U+AU,+B=0 (2.4.1)

where U is a column vector with n components, u,,u,,...,%, and
the matrix 4 and the column vector B are functions of «;, x, and ¢
(3,21). In accordance with the definition of a hyperbolic system,
all the eigenvalues of 4 are real and the corresponding » eigenvectors
are linearly independent. In what follows we assume that the vector
B and the eigenvalues and the eigenvectors of A are continuously
differentiable with respect to their arguments. In order to simplify
the discussion, we assume at first that 4 and B do not depend
explicitly on x and ¢: consequently, there is a constant solution U,
given by

B(U,) =0, (2.4.2)

and we consider a wave propagating itself into this constant state.
Hereafter the quantities in this state will be specified by the subscript
0. Corresponding initial condition can be given such that at £ =0,
U is constant, U, say, for >0 and is Lipschitz continuous at z = 0.
Then, as was explained in Section 1.4, this discontinuity is propagated
along the characteristics issuing out of the origin. Consequently,
on the wave front U remains Lipschitz continuous but after a finite
time, say ¢, it may cease to be Lipschitz continuous tending to a
shock-like discontinuity. If such a critical time £, does not exist the
case will be called an exceptional case. In the following investigations
the value of ¢, will be given explicitly for a given initial condition. It
should be noted, however, that ¢, does not necessarily imply the
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critical interval during which U remains Lipschitz continuous for all
x; in other words, before the critical time ¢, has elapsed U may cease
to be Lipschitz continuous at some interior point of the disturbed
region (i.e., behind the wave front).

Let us now assume that there exists at least one positive eigenvalue
of A so that the wave proceeds in the positive direction of the z-axis.
The velocity of the wave front is identified with one of the positive
eigenvalues, say, A{”. We now introduce the curvilinear coordinates

@ = constant, t’ = constant

through the equations
v =t (2.4.3a)

oA\ p =0, (2.4.3b)

Equation (2.4.3b) implies that ¢(x,t) = constant is a characteristic,
the gradient of which is given by the characteristic root A, i.e.,

%“t’ =@, (2.4.4)

In order to choose ¢(x,t) we impose the initial condition
o(x,0) =z (2.4.5)
and consequently the wave front is given by
p(x,t) =0
where, in the constant state ahead of the wave front, we have
o(x,8)>0.

The transformation introduced through equations (2.4.3a,b) is non-
singular provided the Jacobian of the transformation

z, = 1/p, is non-zero and finite. (2.4.6)

Since x, is initially equal to unity, we can assume that equation
(2.4.6) is valid for a finite time.

In what follows, the discussion will be confined to the neighbour-
hood of the wave front ¢ = 0 (see Fig. 2.11). However, care must be
taken regarding the discussion in the neighbourhood of the origin
since there exist characteristics issuing out of the origin across each
of which U is not smooth. In order to define the region in which U is
smooth we introduce another characteristic issuing out of the origin
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£(x,t) = 0 chosen such that no characteristics issuing from the origin
enter the open region bounded by ¢(z,¢) = 0 and £(x,t) = 0.

This region will be denoted by .# and except for the boundaries
of &, U remains smooth for at least a finite time. In the following
discussions any differential or limiting operation on the side ¢ <0

At

0 T
Fig. 2.11. The region £.

should be carried out in the region #£. Let 9 be the left eigenvector
of A corresponding to the eigenvalue A, then by pre-multiplying
equation (2.4.1) by I and using equation (2.4.3b) we have

. 0 . 0 .
Wl 24— )0y L Wy =
14 {x,, 3t,+()\ A )b‘gp U+bix,=0 (2.4.7)
in which we denote I B by b,
In particular, for A% equal to A, we have
10R Ty +b@k = 0, (2.4.8)

t=1,2,...,r, where r, is the multiplicity of the root A*¥. We now
assume the jump conditions across the wave front ¢ = 0 to be as
follows:

U is continuous, i.e., [U]¢=37 = 0 or U(0,#') = U, (= constant)
U, is continuous, i.e., [[;15=07 = 0

U, is discontinuous, i.e., [U,]6=07 =II(¢') #0

x, is discontinuous, i.e., [z,]6=07 =X (¢') #0

where
[A]2=9- denotes A(0—,¢)—A(0+,t).

=0+



2.4. PROPAGATION OF DISCONTINUITIES 103

These assumptions are justified when Il and X are uniquely
determined for at least a finite time.

From the definition of X we see at once that X + (x,),_o, = (2,),—0-»
while (x,),_o, =2, is finite. Hence condition (2.4.6) implies the
condition

X+z, is finite and non-zero. (2.4.6")

The quantity x,),_,_ is associated with the distance between the two
neighbouring characteristics ¢ = 0 and ¢ = 6 <0 and so the condition
(2.4.6') implies that the characteristics do not cross on the wave front.
In fact, in & and along ¢ = 0 we have

Uz = Uw Pz
which, by virtue of the Jacobian in equation (2.4.6), may be written
U, =U,lz,. (2.4.9)

Hence, if x, becomes zero and U, remains finite, U ceases to be
Lipschitz continuous. The equations for Il and X are derived by
applying the method used in Section 1.1 to the region .#. By means
of equation (2.4.2) it follows immediately from equation (2.4.7) that

IWn=0, j=r,+1,...,n, (2.4.10)
(AD £ @) |

where, as we explained at the start, the subscript 0 refers to the
constant state solution (2.4.2). Since [(U) and V,b(U) are continuous
across the wave front, differentiating equation (2.4.8) with respect
to @ at a point in .# and letting the point tend to a point on the
wave front we have, using the jump conditions, that

1§00 I1, + (V,, bR I = 0, k=1,2,...,r (2.4.11)

Q>

where V, stands for the gradient with respect to the components of
the vector U.

Let us now consider equation (2.4.4) and note first that it is valid
along a curve ¢ = constant and, therefore, that the differentiation on
the left-hand side must be performed holding ¢ = constant. Hence,
since ¢’ = t, equation (2.4.4) is identical with the expression

o= =)\

o'



104 2 ¢ THE METHOD OF CHARACTERISTICS

(Note that dx is the increment x along ¢ = constant corresponding to
an increment dt of ¢.)

Differentiating this result with respect to ¢ at a point P in ¥ we
obtain

0 [ox
— 1= = (2]

or
0
o7 @) = (VA T,

Thus allowing P to tend to a point on the wave front and using the

jump conditions, we find the result
X, = (V, @), I1. (2.4.12)

Since the [§’ are linearly independent vectors we may use equation
(2.4.10) to express (n—r,) arbitrary components of II in terms of r,
components of II. Introduction of these expressions into equations
(2.4.11) leads to r, first order ordinary linear differential equations
with constant coefficients for the r, unknowns, say, II;, Il,, ..., Hw.
Therefore, when the values of these II’s (IIy, II,, ..., I, ) are known at
t' = 0, Il is determined uniquely and is finite for all time. Introducing
this into equation (2.4.12) we obtain

i
X=X+IWMW%HW
0

where for a quantity @ defined only in % the operation @ denotes
the limit § = lim, _, 4(Q),_o_, and for a jump quantity P depending
on the states on adjacent sides of ¢ = 0 the operation P denotes the
limit P = lim,_, ,P taken along ¢ = 0. If we denote by ¢, the
critical time at which the condition (2.4.6’) ceases to be valid, namely,
X +x, becomes zero, then the equation for #, is

le
:‘z‘¢,+f (V, A9 Ildt’ = 0.
0
Since Il depends linearly on II, II/z, depends linearly on 0, It

should be noted that ﬁx is, in general, not equal to

lim (Ux)l=0 ’

xr—>0—

and so U, is not an initial value which may be prescribed arbitrarily.
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Thus, we may determine ¢, in terms of U, by the equation
f:(V,,)\“’))o(H |&,)dt' +1=0. (2.4.13)
As an example, let us consider a simple case B=0. Then, from
equation (2.4.11), II is a constant equal to its initial value
n=0z (e, I=10)
and consequently we have
te = = 1{(V,A), 0}
It follows directly from the expressions for X and II that
Zp = E{1+(Vu X ) 0,8},
but U, = l/x, = U,%,/x, and so U, is given by the expression
U, = O[{1+ (VA O 8}

In isentropic hydrodynamics the A’ are given by equations
(2.1.17) and hence for A**) = u +a, ¢, becomes

t, = — [, +a,], (2.4.14)

is given by
(tg)pmg = pf{1 + (fiy +,) 8} . (2.4.15)
So we see that the velocity profile on the wave front steepens and the
wave tends to a shock at ¢t = ¢, provided @, + @, is negative so that the
wave is compressive in nature. Incidentally, we illustrate in this
simple example the relation between #,, g, and the initial values of

u, and p, at the origin. First of all it should be noted that the region
£ i8 a simple wave region characterised by the equation

while (u,),—o_

u—m(p) = 8o (= constant).

Differentiating this equation with respect to ¢ and then setting
@ = 0— we have the relation (2.4.10); that is to say, relation (2.4.10)
is simply the result of the equation for the Riemann invariant.
Hence in .Z, p and u and consequently p, and u, are not independent
but are subject to one algebraic relation [i.e., u,— (a/p) p, = 0]. Asa
result, in the limit ¢’ -0 taken in . they still have to be subject to
the same relation #,— (ay/py)p, = 0. In other words, they are
different from the initial data which may be prescribed arbitrarily
even though they are on the initial line. In this example we can
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easily obtain an explicit relation between @, and g, and their initial
values at the origin; by analogy with equation (2.1.20") we have

u = }{f(p)+9(p) + 50}

where f(p) and g(p) are the initial distributions of » and m(p),
respectively. Differentiating with respect to ¢ at a point in % and
letting the point tend to the origin along ¢ = 0—, we have

G, = %{(uz)z,ig_ +(m, P’Z}fg_} (2.4.16)
while - -
Pr= ﬁz/(mp)o = %{(m,;)El (uxlt:g_ + (Pz&:g_} . (2.4.17)

Using these results brings equation (2.4.14) into the form

1
t, = _2 1 (2.4.18a)
y+1da,
so the critical point z, (= a,t,) is given by
%, = i( %o ) (2.4.18b)
y+1l\-4a,

If, in particular, the initial conditions are so specified that
u—m(p) = constant, then %, and g, reduce to

(U)o and (Pzhi=o >

r=0— r=0—

respectively. If (V,A@)II is zero, then, from equation (2.4.12), X is
constant and ¢, becomes infinite; consequently, U remains Lipschitz
continuous along the wave front for all time. Such a system is called
exceptional with respect to A®. If the system is exceptional with
respect to any eigenvalue, then it is called completely exceptional
(21,23).

We now consider the general case where 4 and B depend not only
on U but also on x and ¢ explicitly. Instead of the constant state we
assume a region # bounded by the axis ¢ = 0, the line £ = {,, and a
characteristic issuing out of the origin, and assume that in & there
exists a unique smooth solution.

The characteristic bounding £ is taken as one member of the
family given by equations (2.4.3b) and (2.4.4), so that it is expressed

by the equation
o(x,t) =0.



2.4. PROPAGATION OF DISCONTINUITIES 107

The initial condition for ¢(x,?) is also given by equation (2.4.5). For
the initial condition for U we assume similarly that U is Lipschitz
continuous at the origin. Consequently, the region . is similarly
introduced and, along ¢(x,f) = 0, U remains Lipschitz continuous
for at least a finite time £, In order to specify the value of any
quantity on the curve ¢(x,t) = 0 and defined as the limit taken from
within £, the subscript 0 will be used. The same jump conditions
across ¢ = 0 as were previously used are assumed for [U], [U,], [U,],
and [z,]. Moreover, we assume that the explicit differentials of
lp,t',U) and A(p,t', U) with respect to ¢ are continuous, i.e.,

[Z,]=0, AP =0.
However, we should note that U, and consequently I, and A{*’, etc.,

are not constant and that Uy, and b§’ do not vanish but satisfy the
relation
Un+ Ao Uy, + By = 0
or
Z o 1§ Uy + A =NV I Upo + b 20 = 0. (2.4.2")
Assuming z,, is finite, even in this general case we have the equations
(2.4.7) and (2.4.8). Hence from equation (2.4.7) we have

1) Uy X+ () — X2 159 T +6§) X = 0
which, in view of equation (2.4.2"), reduces to
— 1 U X +1§) T, = 0, J=Tpspr sy A £
(2.4.19)
while it follows from equation (2.4.8) that

15080 T, + T1(V, 190, Uy + (V, 6@ T1 = 0,  (2.4.20)

since Uy, now depends explicitly on # and ¢ (prime denotes transpose).
Equation (2.4.12) is valid also in this case, i.e.,

X, = (V,A@), 1. (2.4.12)

Equations (2.4.12), (2.4.19), and (2.4.20) constitute a well-posed
linear system of equations for X and II, and the solution is deter-
mined uniquely for initial values X and [T prescribed at ¢ = 0. The
critical time ¢, at which U ceases to be Lipschitz continuous is given
similarly in terms of I/, by means of the condition Zy)po = 0 Or
X+x, = 0, provided Il remains bounded until ¢, and is finite at ¢,
In this case, (V,A)Il =0 again implies the exceptional case.
Namely, if the upper boundary of £, t,, is infinite, then ¢, is also
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infinite. Moreover, if (V,A)) Il = 0 for all the eigenvalues A of 4,
we have the completely exceptional case. So far we have assumed
that B is continuously differentiable with respect to its argument.
However, even if B is discontinuous at some values of z, the present
discussions are applicable provided the wave front does not pass
over singular points. As an example we mention isentropic spherical
flow in an ideal fluid. Denoting the distance from the origin by x and
the radial velocity component by u, we have the equations

pit+upy+ pu,+2pufr =0
Uy +uu, +(a?/p) p, = 0.
Consequently, U, 4, and B are given by

R O A A N

where x ranges from 0 to + oo and, as was shown earlier, the eigen-
values of 4 are u + a. Suppose that initially p is equal to p,everywhere
th and u is equal to zero for x>z, and
is Lipschitz continuous at x = x,,

that is,
ou
(@), <

R T=To—
Then we have the constant state
» Z bounded by the characteristic
0 o T (x—=z)—a,t=0 as in Fig. 212,
Fie. 2.12. The region #. where w = 0 and p = p, and conse-
quently U, = 0, Uy = 0, and b, = 0.
The jump II is governed by the equations

KM =0
I T, + (Vb)) IT = 0
where I{¥) and (Vb'*)), take the forms

I = (ag, £ po)

and
(Vo) = (0, 2py ap/x) .

Solving the system, we obtain

ao 11, = po I,
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and
I, = ﬁz[l + (@o/7,) 8171
So, compared with the purely one-dimensional case, the jump II
decreases as t increases. In view of these equations we have

1
1+ (@ot/2o)

1~
')’+I

(V) I

Therefore it follows from equation (2.4.13) that the critical point
x, (= g+ ayt,) is given by

R -

If |&,|x, is sufficiently large this may be approximated by the

equation
ab 2 (ay
0T +1\—a,

which is the result of equation (2.4.18b). Finally, we investigate in
more detail the exceptional case given by

(VAT = 0. (2.4.21)

For simplicity we assume Z is a constant solution so that equation
(2.4.19) reduces to equation (2.4.10). Let rk) (k = 1,2,...,7,) be the
right eigenvectors of A corresponding to A®). Then it follows from
equation (2.4.10) that IT can be expressed as a linear combination of
these eigenvectors. On the other hand, the condition (2.4.21) implies
that the vector V, A is orthogonal to II. Therefore we see that the
vector V, A is orthogonal to the eigenvectors »(**). For instance, if
the first j components of 7%, say r{®&), ..., ri®k) are zero and A'* is
independent of the last n —j components of U, u;,,, %;,s, ..., %, and
is a function of u,, u,, ..., u; only, then we have

(V,A@)-ptek) = 0, (2.4.22)

One of the simplest examples is the contact surface in adiabatic gas
flow given by equations (2.2.30) and (2.2.31). The right eigenvector
r1) corresponding to the eigenvalue u is given by equation (2.2.39)
while V, A = (0, 1,0) and hence we obtain equation (2.4.22). Accord-
ingly, we see that along a contact surface all the quantities remain
Lipschitz continuous for all time. Another example is the transverse
wave in magnetohydrodynamics which will be discussed in Part II.



110 2 § THE METHOD OF CHARACTERISTICS

It is worth noting that the scalar equation of the following type is
exceptional:

294 () 57 zé +f(¢ 2% 3"5) 0 (2.4.23)

ox® oxk oz’ 020

where the summations i, k extend over 0 and 1 and g¢;;, = g4, ggo # 0-
Namely, introducing U, u, v through the equations

u
_ _ 9 _ 0
U—[v], u=o and V=73
¢
we may transform equation (2.4.23) into the equations
ou v
e

ov 2901 v {381 ou f

0a® Joo ox! Joo 0x! Joo =9

or
AU,+B=0
where A takes the form
r 0
Al Te,
0 0 1

with I' a (2 x 2) matrix. The two eigenvalues of 4 are given by those
of T and consequently are functions of ¢ only, while the third
components of the corresponding eigenvectors are zero.

We also note that the results are valid even for general non-
constant states provided that

lim (%,),—o- = lim (z,)_o =1,
r—>0 z—> 0—

and consequently that

lim (x,),—o- = lim (,)_o =1,

r—>0 z—> 0+
since in this case X = 0 and equation (2.4.21) gives X = 0 so that
equation (2.4.19) reduces to equation (2.4.10).



CONSERVATION LAWS AND
WEAK SOLUTIONS

3.1. CONSERVATION Laws

LET Us CONSIDER a vector density Q defined in a domain D bounded
by a surface § with outward drawn normal n then, by the Gaussian
divergence theorem,

LV-OdV=LO-ndS=¢ (3.11)

where ¢ is the scalar flux of Q through 8, and dV and dS are volume
and surface elements, respectively. If we now assume that the surface
S is moving in space and that an element of the surface specified by
position vector r moves with velocity q(r,¢), then, by a well-known
theorem (27), we have the result that

flqtp L{(V Q)q +?—O+V><(O><q)}-nd8. (3.1.2)

This result is more detailed than we need consider here since our
concern will be only with the scalar quantity U defined by

U=V-Q. (3.1.3)

Differentiating equation (3.1.1) with respect to ¢ and defining the
vector F by the expression

9Q

—F——(;)?+Vx(0xq) (3.1.4)
we may re-write equations (3.1.1) and (3.1.2) in the form
ﬂfUdV:J‘{Uq—F}-ndS'. (3.1.5)
dt Jp s

Equation (3.1.5) is the integral form of a conservation law which
expresses the fact that the rate of change of a quantity U contained in

111
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a domain D of space is equal to the flux entering D through the
moving boundary surface S.

The scalar U and the vector F of conservation equation (3.1.5) are
not independent as can be seen by taking the divergence of equation
(3.1.4) and using equation (3.1.3) to obtain

ou

W+V°F=O. (3.1.6)
Equation (3.1.6) is said to be expressed in divergence form and is
the differential form of the conservation law and expresses the
divergence-free character of the vector field (U, F).

Now suppose that F and U have jump discontinuities across a
hypersurface a(r,¢) = constant. Then, within this hypersurface

Ja o Oa Ja

WdH del 4+ —dx?+ ...+ —

ot O0x? oxm dam =0,

which may be written

-aa—(-; dt+V,o-dr=0
where V, denotes the gradient operator acting on the space vari-
ables al,2% ...,2™ and dr is a space increment with components
dat,da?, ...,dz™. Dividing by df gives the result in the limit that
6—0+Vza-q=0 (3.1.7)
ot
where ¢ is now the local velocity of propagation of the discontinuity
surface. For simplicity of discussion we now identify the domain
D of equation (3.1.5) with a specially chosen three-dimensional
cylindrical volume element although the result is still true for the
case of more dimensions. Let the volume element be chosen such that
at a time ¢ the hypersurface o(r,t) = constant divides it into two
parts with the cylinder ends parallel to the discontinuity surface as
illustrated in Fig. 3.1. Equation (3.1.5) then becomes

if UdV=f (Uq—F)l-nldS+f (Uq— F), n,dS
dat Jay as, as

+f (Uq—F)-nds’ (3.1.8)

side of cylinder
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where (); signifies that the quantity in the parentheses is evaluated
on the side appropriate to n,. Letting the volume dV shrink to zero,
the surfaces dS; and dS, coincide in the limit with the discontinuity
surface o(r,t) = constant and so 1, = —n,. Both the integral over

o(r,t) = constant

m

Fia. 3.1. Volume element intersected by discontinuity surface at time ¢.

the cylinder sides and the volume integral tend to zero as the volume
dV tends to zero since the integrands suffer no singularity and
finally equation (3.1.8) reduces to

(Uq—F);'n+({Uq—F),-n, =0.

Using the notation [X] to signify the jump X; — X, in the quantity
X across the discontinuity surface we write this equation

[Uq-n,—F-n,]=0. (3.1.9)
Since the unit vector 1, normal to the hypersurface is given by
V.o
n, =%
P Vg0
we have by virtue of equation (3.1.7) that

—Jdof0t  «

‘N, =—271"=X (savy). 3.1.10
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The quantity A defined in equation (3.1.10) is the local velocity of
propagation of the discontinuity along the normal n;,. Combining
equations (3.1.9) and (3.1.10) gives the generalised Rankine—Hugoniot
relationt

[AU-F-n,]=0 (3.1.11)
which is sometimes written in the form
AU] = [F-n,]. (3.1.11")

Equation (3.1.11') is so called on account of the Rankine-Hugoniot
relations of gas dynamics (3, 23) in which the conservation equations
(3.1.6) are the conservation laws of mass, momentum, and energy. In
these circumstances the jump relations (3.1.11’) describe a shock
wave and give three conditions for the four unknowns, the density p,
the flow velocity u, the pressure p, and the shock speed X. If the

1 This result may be derived in a more familiar manner as follows. Consider
(U, F) as a vector in four-dimensional space-time say, &, and take as our
starting point the slight generalisation of equation (3.1.6) to the form

U+V-F+B =0

where B is assumed to be a piecewise continuous function. We write this as
the four-dimensional divergence equation

V-§+B =0

and integrate it over a hypervolume using the Gaussian divergence theorem
to obtain

fz}.stds+f BdV =0.
s av

Since B is assumed to be piecewise continuous in dV this becomes, in the
limit as dV shrinks to zero,

[FN=0 (A)
where N is the four-dimensional unit normal with components

Ot
’
NOgu Oz

The jump condition (A) becomes

N, = p=01,23.

3
[o, U+ 20’,,7:1'1”"] =0
k=1
which, dividing by | V.o |, becomes
[-AU+F-n,]=0

—o0 V.o
where X= |th:| and n, =%
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states to the left and right of the discontinuity are denoted by the
suffixes [ and r, respectively, then, for one-dimensional flow, equation
(3.1.11’) connects p;, p,> %, U,, Py, Py, and A. Thus given the state on
one side and one quantity on the other side or alternatively the shock
speed A, the state on the other side may be expressed in terms of these
quantities. However, these conditions are not sufficient to determine
a physically relevant state across a shock since an ambiguity still
exists concerning the sign of the jumps. To resolve this we must use
in addition to the relations (3.1.11') the entropy condition which
states that entropy increases upon crossing a shock. This additional
condition ensures the supersonic character of shock waves (3). The
general problem of selecting physically relevant solutions will be
examined in considerable detail in Sections 3.3 and 3.4; the special
case of the entropy condition in gas dynamics is discussed in
Section 3.6.

We now restrict the discussion to the situation involving systems
of equations with the two independent variables x and ¢ and n
dependent variables. The previous equations still stand but now U
is a column vector with components u,,u,, ..., %, and F = F(U) has
components F,, F,, ..., F, and the divergence form of the conservation
law (3.1.6) becomes

U+F,=0. (3.1.12)
If we denote the gradient operator with respect to u by V,, then
F,=(V,F)U, (3.1.13)
or
F, = AU, (3.1.14)
where
ou, Ouy ... Ou,
A=| ou, ou, .. 0ou, |. (3.1.15)
| Ou, Ou, ... Ou,

Using this result and the definition in Section 2.1 we see that the
system of equations (3.1.12) transforms into the quasi-linear system

U+A4U,=0 with A=V,F (3.1.16)
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which is hyperbolic when the eigenvalues of 4 are real and distinct.
The generalised Rankine-Hugoniot relation (3.1.11’) now takes the

very simple form B
AlU] = [F] (3.1.17)

expressing the continuity of the normal component of the vector field
(U, F) across the discontinuity line.

An essential difference between linear and quasi-linear hyperbolic
systems is that only for linear and semi-linear hyperbolicsystemsdo the
generalised Rankine-Hugoniot relations imply that the discontinuity
surface coincides with a characteristic manifold. This may be seen
easily in the example just discussed if we assume that F = AU with
A independent of U when the Rankine-Hugoniot relations (3.1.17)
become

U1 = [AU]
or .
(A-A)[U]=0,
which, for the equations to be consistent, requires that
|A-X|=0

which is simply the characteristic determinant.

A more general expression than the divergence-free form of the
conservation laws (3.1.6) is the following generalised system of
conservation laws in the two independent variables-x and ¢:

U+F,+B=0. (3.1.18)

Physically, equation (3.1.18) is not a conservation law unless B = 0.

3.2. WEAK SOLUTIONS

The results obtained so far have assumed that all the functions
involved are differentiable the required number of times and that they
remain so throughout the time interval under consideration. That
this situation is not always the case has already been shown in the
case of simple wave motion where, even when starting from analytic
initial data, a discontinuity can develop after a finite time thus
causing the solution to cease to be differentiable. To overcome these
difficulties we must generalise the notion of a solution to include
such discontinuous and non-differentiable solutions in such a way
that they still satisfy the original differential equations in some sense.
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Let us establish our extension of the usual solution to a differential
equation by using the following ideas.

We consider the function » and the set of test functions {w} with
the property that the functions w are differentiable as often as is
required and are identically zero outside a bounded domain D. Now
let us define the functional u{w} by the expression

0
w{w} = f w(z) u(x) dx (3.2.1)
— 0

which, by the choice of the class of test functions, must always exist.
Thus the functional (3.2.1) is seen to be an assignment of a number
u{w} to each test function w.

Assuming for the moment that the function  is differentiable with
derivative u’, we integrate the functional

(o]
u'{w} = f w(z) u'(x) dx
— 0
using integration by parts to obtain

0
uw'{w} = |w(x) u(z) ?w—f w'(x) u(x)dx .
— 0
Since w(x) is identically zero outside a bounded domain D the first
term on the right-hand side of this equation vanishes and the equation
becomes
0
uw'{w} = —f w'(x) u(x) de
or ”
w'{w} = —ufw'}. (3.2.2)
Because the operation of integration is additive it follows immediately
that
ufowy +Bwy} = auf{wy} + Bufwy},
and similarly that
w'{ow; +Bwy} = ou'{wi}+ Bu'{w,}

for o« and B any numbers, and so u{w} and u'{w} are linear functionals.
The result (3.2.2) may be extended to derivatives of any order n by
requiring that the class of test functions w be n-differentiable when,
using repeated integration by parts, we obtain the general result

u™M{w} = (= 1) ufw™}. (3.2.3)
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If now u™{w} does not exist in the usual sense we use the right-hand
side of expression (3.2.3) to define the derivative u™{w} of the
functional u{w} since the right-hand side of this expression always
exists. Thus, in generalising our notion of differentiation we require
that for any test function w with the required differentiability proper-
ties the functional

fco w(x) u'™(x) dx (A)
—©
involving u™(z) is to be replaced by the corresponding functional
0
(—-l)”f w™(z) u(z) dx . (B)
—a

A definite meaning (B) has thus always been assigned to (A) even
when «™(z) does not exist in the usual sense.

These ideas generalise at once to functions of several variables
and to systems of equations as follows. Consider the case of the
system of conservation equations (3.1.18) with the initial conditions
U(x,0) = ®(z). This system involves the two independent variables
z and t and the n dependent variables u,, u,, ..., u,. Now introduce
the class of row test vectors W(x,t) with the property that they are
differentiable as often as is required with respect to « and ¢ and that
they vanish identically outside a bounded domain D of (x,f)-space.
Pre-multiply equations (3.1.18) by a test vector W and integrate
over the xz-range to obtain

e o) 0
f WU dz+ | W(F,+B)dx = 0.
-0 —©

Integrating the term involving F, by parts and using the property of
W outside D (i.e., for large |x|+t), we find that

fw WU,dx-i-fw (=W, F+WB)dx = 0.

We now integrate this result with respect to ¢ over the semi-infinite
interval and again use integration by parts to obtain

fw {1 WU|$—fmedt}dx+f®fw (=W, F+ WB}dxdt = 0.
(1} 0 J—w

—x
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From the initial conditions U(x,0) = ®(2) and the behaviour of W
outside D we see that this finally reduces to

-fw W(x,O)(I)(x)dx+fwfw (~W,U—W,F+WB}dadt = 0.
—0 0 —
(3.2.4)

Any column vector U(z,t) satisfying equation (3.2.4) for all test
vectors W in D is defined to be a weak solution of the system of
conservation equations (3.1.18) with initial conditions

Uz, 0) = O(x).

If an ordinary solution exists, here called a genuine solution, then
it obviously satisfies equation (3.2.4) and is thus also a weak solution.
Conversely, a weak solution with continuous derivatives is a genuine
solution. However, by virtue of the definition of weak solutions,
they need not be differentiable and may have discontinuities across
some curve o(%,t) = constant in the (z,t)-plane. If the idea of weak
solutions is applied to the arguments used in Section 3.1, it follows
directly that if genuine solutions U, and U, are defined on adjacent
sides of a(x,t) = constant then the two solutions taken together form a
weak solution only if the jumps in U and F satisfy the generalised
Rankine—Hugoniot relation

A[lU] = [F] (3.2.5)

where, as before, A is the velocity of propagation of the discontinuity
line. The idea of a solution has now been extended to include
weak solutions which, as we have seen, need not be differentiable
and may include a certain type of jump discontinuity. However,
since the extension has been made in such a way that a genuine
solution is also a weak solution we should examine this extension
more closely to see if weak solutions have the important uniqueness
property of genuine solutions.

We now establish the non-uniqueness of weak solutions by example,
for we shall show that two different functions are both weak solutions
of the same equation with the same initial conditions. For our
purpose we consider the equation

u+ ($ud), =0 (3.2.6)
with the initial condition

0forx<0
D(x) = (3.2.7)
1forx>0.
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Since the equation is homogeneous the solution will depend on the
ratio (x/t) and it is easily seen that where differentiable the function

0 forx<0
w(x,t) = 9 (z/t)V2 for O<x <t (3.2.8)
1 fort<zx

is a solution of equation (3.2.6). To show that it is a weak solution
we must establish that equation (3.2.4) with B=0 is valid for all once
differentiable test functions W(x,t) (i.e., W, and W, exist and are
continuous). Substituting expressions (3.2.7) and (3.2.8) into the
left-hand side of equation (3.2.4) gives

[ o " anf o

+ fo ﬁ W+ 3W)dzdt =R (3.2.9)

where if R is identically zero for all once differentiable W the
function (3.2.8) is a weak solution. Interchanging the order of
integration where necessary and integrating gives

Z1/2
fode foxdx+%fft3/2 (,t) dx dt

x1/2 0
f ttdt—%f f i Wz t)dxdt+f W(x,x)dx
0

_ FW(”’ 0) dx—§wa(t, t)ydt=R.
0 0
(3.2.10)

Since all terms exist and cancel identically we find that R=0 and so
expression (3.2.8) is a weak solution of equation (3.2.6) with initial
condition (3.2.7). A second weak solution may be obtained very
easily by using the fact that a jump discontinuity is also a weak
solution provided it satisfies the Rankine-Hugoniot relation (3.2.5).
Let us assume then that across the line z/t = constant u suffers a
jump discontinuity such that

u =

0 forxft<k
(3.2.11)

1 for x/t>k
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and determine k£ such that the Rankine-Hugoniot relation (3.2.5)
is satisfied. From the relations (3.2.5) and (3.2.11) and equation
(3.1.10) we find that

k(0—1) = (0—1%)

k=1%.

Thus the jump discontinuity determined by expression (3.2.11) with
k =% is also a weak solution satisfying the same initial condition
(3.2.7) as does the weak solution (3.2.8). These two examples
demonstrate the non-uniqueness of weak solutions in the case of the
single equation (3.2.6) and in general infinitely many weak solutions
exist with these same initial conditions. This non-uniqueness is of
course shared by the more general system of conservation equations
of the type (3.1.18).

An extension of the notion of the convergence of a sequence of
functions plays an important part in the limiting operations which
are often required when dealing with weak solutions (2). We now
mention two important types of convergence and indicate a funda-
mental relationship that exists between them.

and so, finally,

A sequence of functions U,,U,, ... converges weakly to a limit
function U if, for every function W,
lim ff WU, dxdt = Jf WU daxdt (3.2.12)
n-> D D

for all domains D of the (x,¢)-plane.

Stronger than this form of convergence is convergence in the mean
of order p defined as follows (28). The sequence of functions
U,, U, ... converges in the mean of order p to a limit function U if

lim ff |U,—UPdxdt =0 (3.2.13)
n—> o D
for all bounded domains D of the (x,t)-plane.

The special case corresponding to p = 1 is called strong convergence
and Lax (22), using the assumed fact that the conservation equations
are genuinely non-linear [and so V, F the coefficient of U, in equation
(3.1.13) is a function of U], has established the following important
result.

If the sequence of functions U, converges in the weak sense to a
limit function U, then F(U,) converges in the weak sense to F(U) if
and only if U, also converges strongly to U.
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In order that the ideas of weak solutions may be applied to physical
situations we must find some method of selection which enables the
physically relevant solution to be selected from the infinity of weak
solutions which exist. Such a principle is the postulate proposed
by Hadamard that in a physical problem the solution depends
continuously on the initial data.

One method for the selection of physically relevant solutions is that
described in Section 63 of the book by Courant and Friedrichs (3).
There a brief discussion is presented concerning the irreversible
terms involving viscosity and heat conduction appearing in equations
(1.9.1) and the heat equation (1.9.3Db).

They assume that under suitable initial and boundary conditions
equations (1.9.1) and (1.9.3b) possess a unique and continuous
solution which, as the coefficients of viscosity and heat condition
tend to zero, converges to a solution of the differential equations of
non-viscous and non-heat-conducting flow everywhere except for
certain surfaces where the convergence is non-uniform. Across these
surfaces the limit solution is discontinuous, the discontinuity
determining the nature of the shock or contact discontinuity which
occurs there. Assuming these convergence properties and the
further assumption that in the neighbourhood of the discontinuity
at time ¢ =0 the process may be considered steady, they then
deduce the shock conditions for one-dimensional flow. The fourth
shock condition of increasing entropy across a shock is derived
directly by this method and, as Courant and Friedrichs remark,
this shock condition, which is independent of the three conservation laws
of mass, momentum, and energy, results in the limit from a heat equation
which is dependent on the three conservation laws for continuous flow.

A corresponding method is to introduce a term analogous to
viscosity and to postulate that the weak solutions occurring in nature
may be obtained as the limit of viscous solutions as the viscosity tends
to zero. A study of the single equation

Uy +/. z = )‘uxx
by Olejnik (30-33) and Ladyzhenskaya (18) has established that
solutions of this equation with initial values u(x, 0) = ®(x) tend to
a weak solution of
Uy +fo(x,t,u) =0
satisfying the same initial condition. Instead of carrying out this
limiting process Olejnik has shown how a uniqueness theorem may
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be obtained which gives the intrinsic characterisation of such weak
solutions which are obtained as limit solutions as A tends to zero.
These results have been re-derived as a special result by Douglis (5)
in a study of the continuous dependence of solutions upon their
initial data. Germain and Bader (14) have shown, in the special case
that f satisfies a convexity condition along the discontinuity curve,
that the piecewise continuous weak solution satisfying (3.2.5) is
unique.

Returning now to the general hyperbolic system of equations
(3.1.18) and augmenting them by the addition of a viscous-like term

AU, we obtain
U+F,+B=MU,. (3.2.14)

Identifying this equation with equation (1.1.1) we see that the
discriminant b%2—4ac = 0 and so, by the definition of Section 1.1,
the system of equations (3.2.14) is parabolic.

Accepting the conjecture that the required physically relevant
solution may be obtained as a limiting case of equations (3.2.14) we
now show that if U,(x,t) is a solution of equations (3.1.18) with
initial conditions ®(x), then the limit U(x,t) of U,(x,t) is a weak
solution of equations (3.2.4) provided Ul(x,t) is a strong limit of the
sequence U,(x,t). To establish this result we pre-multiply equation
(3.2.14) by a test vector W and integrate by parts as before to obtain

_r W (x, 0)dz— Fr (WU, +W,F(U,) — WB)dadt
—0 0 — 0

- Afwfw W, U, dwdt. (3.2.15)
0 J—

For ® and W fixed, the left-hand side of equation (3.2.15) tends to
the left-hand side of equation (3.2.4) provided F(U,)— F(U) which,
as we have just seen, requires that U, converges strongly to U, and the
right-hand side tends to zero establishing our assertion.

In connection with the numerical computation of weak solutions
Lax (21-23) has remarked the important fact that the class of
physically relevant weak solutions obtained by the viscosity method
is irreversible in time which is a direct consequence of the fact that the
parabolic equation used in the limit process distinguishes direction
in time.
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3.3. EvoLuTioNARY CONDITIONS ON
DiScoNTINUITIES IN CONSERVATION LAwS oF
HyperBoLic TYPE

We consider a system of conservation laws in one space variable
given by the system of equations

U+F, =0 (3.3.1)

where, as in equation (3.1.13), U is a column vector of n components
Uy, Us, ..., U, and F = F(U) is a vector valued function of U. Then,
as in equations (3.1.16), we obtain the equivalent quasi-linear
system of equations by differentiating F to obtain

U+AU, =0 where 4 =V, F. (3.3.2)

We shall assume that all the eigenvalues of A are real and that it has
a full set of linearly independent eigenvectors at all points of a
certain domain of U-space, namely, that the system (3.3.2) is
hyperbolic in this domain.

Since A4 is not assumed to depend explicitly on = and ¢, equations
(3.3.1) admit of a weak solution which is constant on either side of a
discontinuity moving with constant velocity, say A. As we have
already seen in Section 3.2, for these two constant states to constitute
a weak solution, we must have the velocity A and the jumps in U and
F connected by the generalised Rankine-Hugoniot relations

U] = [F]. (3.3.3)

We may assume that equations (3.3.3) determine non-trivial
solutions when a set of values {u,} is specified on one side of the
discontinuity and a value of A or a component of [U] is given.

However, all the solutions thus determined are not necessarily
physically relevant. We have already seen that for gas dynamics the
discontinuity may be a shock and equations (3.3.3) are then the
jump conditions resulting from the conservation of mass, momentum,
and energy. As is well known rarefaction shocks do not exist yet
equations (3.3.3) as they stand include them as a non-physical
solution. We remarked on this earlier and pointed out that in gas
dynamics we must supplement the jump relations (3.3.3) by the
addition of the entropy condition to obtain a unique and physically
relevant solution. For more complicated systems (e.g., magneto-
hydrodynamic shocks) the entropy condition is insufficient for this
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selection process and we propose as our selection principle for the
case of one space variable the following evolutionary condition on the
discontinuity.

Evolutionary Condition (E.1). A discontinuity is said to be evolu-
tionary if and only if the disturbances, which consist of outgoing waves,
and the motion of the discontinuity, resulting from small amplitude
disturbances incident upon the discontinuity, are both small and uniquely
determined.

If the evolutionary condition is not valid for a discontinuity, the
discontinuity will be excluded as physically irrelevant. We will prove
that the evolutionary condition (E.1) is equivalent to the following
more convenient condition.

Evolutionary Condition (E.2). A discontinuity is evolutionary if
and only if the number of small amplitude outgoing waves diverging from
the discontinuity is equal to the number of the boundary conditions minus
one, and at the same time the eigenvectors of A corresponding to these
outgoing waves and the vector [U] are linearly independent provided of
course that the disturbed boundary conditions resulting from equations
(3.3.3) are independent.

The evolutionary condition thus formulated involves as a special
case the conditions proposed by Lax (23), Friedrichs (10), Landau and
Lifschitz (19), and Gel’fand and Babenko (13). We also show that in
gas dynamics the condition (E.2) implies that flow is supersonic in
front of a shock and subsonic behind and, consequently, that in gas
dynamics the evolutionary condition and the entropy condition are
equivalent.

3.4. EvoLuTiIONARY CONDITIONS ON A
GENERAL SYSTEM

We now proceed with the proposed derivation of evolutionary
condition (E.2) from condition (E.1) and start by considering
equations (3.3.1) subject to the boundary conditions (3.3.3).

Let us take the coordinate system moving with the discontinuity
and transform to this system through the Galilean transformation

x =xz—X

' =t.
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Using this transformation and the identities
0 _ox' 0 o 0
a-wow war

and
0 _ox' 0 ot o

= Owow owdl

we re-write equations (3.3.1) in the form

Uy+(F-2U), = 0. (3.4.1)

The boundary conditions (3.3.3) reduce to
[F-A01=0 at 2 =0, (3.4.2)
where the upper bar of U denotes the unperturbed constant solution

and F = F(U).

In the following work we omit the primes of the new coordinates
x' and ¢ and use the subscript 1 or 0 to denote quantities in the
positive and negative parts of the z-axis, respectively. Thus U will
be expressed in terms of the two constants U] and U, as

U, for x>0
U= (3.4.3)
U, for x<0.

We now assume that incoming waves have time dependence
exp (1wt) so that the disturbance of the discontinuity itself and all
the outgoing waves have the same harmonic time dependence. In
what follows only the real or the imaginary part of any complex
valued function is physically meaningful. A perturbed solution of
equation (3.4.1) can be given by

U=U+8U (3.4.4)
where 8U corresponds to the superposition of small amplitude

incoming and outgoing waves, whilst the boundary condition for U is
given by

S[U]=[F-AU] at x=0 (3.4.5)
where 8o(t) is the disturbed velocity of the boundary given by
8o = 3(38;:) = —8sexp (iwt) (3.4.6)

with a constant 8s characterising the smallness of the disturbance of
the discontinuity.
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By virtue of the condition (3.4.2), equation (3.4.5) reduces to

Ss[U1=[A8U] at =0 (3.4.7)
where A denotes 4 —XI. However, 8U satisfies the equation
8U+ ASU, = 0 (3.4.8)

where by 8U, we mean (8U),, and consequently we have
8T, = 5 8a® B exp {iw(t—x%)} (j=01) (3.4.9)
J

where the b‘a;“”s are constants characterising the smallness of the
disturbances, the A{ are the eigenvalues, and E{ the corresponding
eigenvectors of the matrices A, respectively, i.e.,

(A;-X2N)E® =0  (j=0,1). (3.4.10)

We note that the matrices A, = A(Uj) are constant matrices.

The eigenvalues A{* may be degenerate; however, from our
assumptions there necessarlly exist n linearly independent eigen-
vectors E}”,E}z’, o B,

The expression (3.4.9) implies that in the region z<0 (ie., for
Jj=0) outgomg waves are given by negative X’s and incoming
waves are given by positive A{’s, whilst in the region x>0 (i.e., for
j = 1) outgoing waves are given by positive A{®’s and incoming
waves are given by negative A{®’s.

All the eigenvalues -corresponding to outgoing waves will be
denoted by A with («=1,2,...,a,,) and the corresponding da{®

out

and E{* will be denoted by 8a{) and E%, respectively ; whilst those
corresponding to incoming waves will be denoted by A%, —8a{®, and
E® with («=1,2,...,0,) where of course ag,,+o, =2n. Then,
inserting equation (3.4.9) into equation (3.4.7) we get

out ““out ~out

sat@ \@) B@) 4 5[] = “z"j’ISa;g) NOF@ . (3.4.11)
a=1 a=

When incoming disturbances are given, equations (3.4.11) become
a system of algebraic equations for the «,,+ 1 unknowns 8a{% and
8s.

Hence the system (3.4.11) has a unique non-trivial solution only
if ayy+1 = 7 and the vectors E%) and [U] are linearly independent
provided also that the equations in the systems (3.4.11) are indepen-
dent. Thus we arrive at the alternative statement of the evolutionary
condition (E.2).
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The system of equations (3.4.11) may be given in matrix form as

710“ ‘/’out = Tin ‘l’in
where the vectors y,,, ¥, and the matrices 7,,, and 7}, are defined as

Bafl Bafp
‘/’out = ’ l)l'ln = : )
Salg Sajge
and _
Towe = AR EGH AL B - A B, (U] (3:4.12)
T, = NP B, AP BD, ..., Now) Efow)] (3.4.13)
or, alternatively, it may be written in terms of the transformation
matrix S,
i ‘/’out =8 ‘l’ln
with
8§ =TT

The evolutionary condition may be given such that «y,, =n-1,
det|T,,,|#0. If all the vectors E'® («=1,2,...,q.,,) and [U] are
linearly independent, the present evolutionary condition becomes
that of Lax (23) which assumes only that «y,+1 = n. The linear
independence of these vectors is especially significant in the case where
the matrix 4 is divided into some irreducible parts ; namely, in this case
the set of outgoing waves must be such that. the E® and [U] are
linearly independent in each subspace so that 7, takes an irreducible

out

form, otherwise even if the Lax condition is satisfied y,,, cannot be
obtained uniquely. This was first found in magnetohydrodynamics
by Syrovatskii (40).

Finally we mention the classification of evolutionary discontinuities.

If, on each side of a discontinuity, the velocity A of the discon-
tinuity coincides with one of the characteristic roots A of the matrix
A, then one of the X®’s reduces to zero, this type of discontinuity will
be called an exceptional discontinuity; whilst if A is not equal to any
characteristic root on either side of a discontinuity, it will be referred
to as a genuine shock, or simply as a shock. However, it should be
remarked that the definition of genuine shock is not identical with the
definition of a shock in the usual gas dynamic sense that particles
move across the shock.

Namely, there exists an exceptional discontinuity across which
particles move (cf. the transverse shock in magnetohydrodynamics,
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see Part II, Section 6.4). As will be seen later, the definition of a
shock employed here is not based on the usual physical notion but
on the property that the discontinuity can be formed from a smooth
wave.

A well-known example of exceptional discontinuities is the contact
discontinuity in gas dynamics. It will be shown in Part IT, Chapter 6,
that in hydromagnetic exceptional discontinuities the boundary
conditions (3.4.11) are not necessarily independent. However, it can
be proved that for genuine shocks the boundary conditions (3.4.11)
are independent. Let us assume, for example, that one equation in
(3.4.11) can be derived from the others; then this equation may be
considered as the identity 0=0; since all the A®’s differ from zero
we find that all the vectors B, E*, and [U] belong to the same
n—1 subspace and this contradicts the assumption that the eigen-
vectors of A span the n-dimensional space.

If X coincides with one of the characteristics on one side or the
other, the discontinuity will be referred to as an intermediate
discontinuity. If in (evolutionary or non-evolutionary) discontinuities
at least one of the eigenvalues A is equal to zero, the small amplitude
8a'® of the zero eigenvalue cannot be determined by the boundary
condition so far considered and remains undetermined in the problem
under consideration. [Originally, in order that the expression (3.4.9)
should have a meaning, the frequency w must equal zero for a zero
eigenvalue.]

Since from our standpoint, waves with zero phase velocity are
neither incoming nor outgoing, this indeterminacy of amplitude
associated with zero phase velocity does not affect the evolutionary
condition defined by statement E.1. However, we note here that
special attention must be given to waves with a zero phase velocity.
Polovint pointed out that a wave of zero phase velocity must be
regarded as ingoing, and obtained results which differ from ours. In
his results the 180° Alfvén shock and the switch-on and switch-off
shocks in magnetohydrodynamics become evolutionary, contrary
to our results (see Chapter 6).

The essential point of his argument is based on the claim that the
classification of waves into ingoing and outgoing waves must be
performed not by the phase velocity of the linearised pertur-
bations but by the number of outgoing characteristics when
discussing waves of zero phase velocity. In the case of the shocks

t Private communication, May 1962.
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mentioned above one of the characteristics is outgoing though it is
tangential to the f-axis and in a linear approximation this character-
istic must be regarded as ingoing.

In our work, however, instead of taking into account the special
conditions of degenerate zero phase velocity, we will introduce the
notion of a weakly evolutionary condition which leads to results
almost equivalent to those of Polovin (see Section 7.1).

The results obtained so far for the normal incidence of disturbances
(the purely one-dimensional evolutionary conditions) are also valid
for the case of oblique incidence, for a system which is sufficiently
general from a physical point of view, provided that the incoming
and outgoing waves are classified in terms of group velocity and not
of phase velocity. This was first proved in magnetohydrodynamics
by Kontorovitch (66).

3.5. GENERAL SHOCK RELATIONS (23)

We now investigate the general consequences which follow from
the generalised Rankine-Hugoniot relations and the evolutionary
condition. Let us consider the case in which the evolutionary
condition for a (genuine) shock reduces to Lax’s condition, which
states that the number of outgoing waves is n— 1. Since outgoing
waves correspond to outgoing characteristics (i.e., the characteristics
issuing in the positive ¢-direction from a point on the shock), this
condition implies that the number of outgoing characteristics is
n—1. More precisely, in the coordinate system in which the shock is
moving with velocity A let the solutions on the right and the left side
of the shock be U, and U, respectively, and the characteristic roots A
on either side of the shock be A(U,) and A(U]), respectively. Draw
the outgoing characteristics such that those with A(U,) stay to the
right of the shock and those with A([}) stay to the left; then the
number of the characteristics thus drawn must be equal to n— 1.

It is quite obvious that Lax’s condition requires that, for some
index k, 1< k<n, the inequalities

AE-1([]) < A< AE(T)
A®N(TL) < A< AUe+1 (T )

hold, in which the characteristic speeds are assumed to be indexed in
increasing order of magnitude and k will be used as the index of the

(3.5.1)



3.5. GENERAL SHOCK RELATIONS 131

shock (i.e., the outgoing characteristic corresponding to A%® is
dismissed).

Thus we see that there are n different kinds of shocks. It was
proved by Lax (23) that any given state U, can be connected with
a one-parameter family of states U, = Ule), e <0, on the right through a
k-(genuine) shock, provided that the kth family of characteristics is not
exceptional. We recall that the exceptional case has already been
defined in Section 2.2 by equation (2.2.25) as

(V AR )k = 0

As was noted earlier, the generalised Rankine-Hugoniot conditions
are n—1 relations between uy, ..., u,, and u,, ..., %, so that if U on
one side and one component of U on the other side are specified, or A
is fixed, then all the other quantities are given in terms of these
quantities. For example, if U, is fixed, the U, form a one-parameter
family of states.

U,=Ul), U©0)=0,
the shock speed A is also a function of the parameter e,
A= Xe)
(e may perhaps be the jump of a component of U say [u,]).

Hence our aim is to prove that e < 0 if the inequalities (3.5.1) hold}
and (V, A%tk £ 0 for all U. ]

We establish this by calculating A, A, A, and A for € = 0. It is easy
to see that A(0) = A®)(U]); in fact differentiating equation (3.3.3) with
respect to e and putting € = 0 leads to the equation

A0)U = AU fore=0,

which implies that .
A(0) = A®(T)
U(0) = ar®(U)
where « is a constant normalisation factor. Hereafter we omit the
superscript k. By changing the parameter ¢, « can be made equal to
unity and we have

(3.5.2a)

U(0) = r(l). (3.5.2b)
The normalisation of r will be given below.

+ We restrict ourselves to the discussion of a constant solution U, and U,.
However, all the results given by Lax are valid for a non-constant solution (23).
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Differentiating equation (3.3.3) twice and using equations (3.5.2a,b)
we have, at ¢ = 0,

AU+ 2% = AU + Ar. (3.5.3)
On the other hand, from Ar = Ar we have
N+ Xr = A7+ Ar. (3.5.4)

Multiplying equations (3.5.3) and (3.5.4) by the left eigenvector I
and subtracting the two results we obtain

2(0) = X(0). (3.5.5)
Subtracting equation (3.5.4) from equation (3.5.3) we find that
NU—#) = A(U-+)
and therefore U/ —# is parallel to r, and so
U0)=7+8r.

By changing the parametrisation the constant 8 can be made equal
to zero, so

U(0) = # = (V,nU = (V,1)r. (3.5.6)
Since (V, A)r# 0 we can normalise r such that
(V,Nr = 1. (3.5.7)

From this result and equation (3.5.2b) it follows that
1 = (V,A0)TU(0) = X(0).

Therefore we obtain .
A0)=1, A0)=1}. (3.5.8)

Consequently, from the inequalities (3.5.1), it follows that ¢ must
be negative in order that the discontinuity is a k-shock. The
parametrisation is normalised by equations (3.5.7), (3.5.6), and
(3.5.2b). Equation (3.5.5) implies that the shock speed, up to terms of
order €2 is the arithmetic mean of the characteristic speeds ahead of and
behind the shock. ‘

It is also easy to see a parallel that exists between shocks and
centred simple waves, concerning equations (3.5.2) and (3.5.6).

As was already shown in Section 2.2, the two constant states U,
and U, can also be connected through a centred kth simple wave,
across which the jumps of the (n—1) kth Riemann invariants J are

Zero,
J]1=0, (3.5.9a)
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provided that
MO) <NU,) (3.5.9b)

where the superscript k is omitted.

Hence the two states can be given by U, = U(e), U, = U(0) where ¢
is a parameter characterising the intensity of the simple wave. Then,
using equation (3.5.9a) and differentiating J(U(e)) with respect to €
at e = 0 gives

(V,J)U =0.

Thus, from the definition of the Riemann invariant (2.2.22), it

follows that

U(0) = r(Tj) (3.5.2b")
in which we fixed the parametrisation so that the constant of
proportionality is unity. By virtue of the normalisation condition
(3.5.7), we have the relation

A= (VN = (V,)r=1 (3.5.8")

which implies that A increases as e increases.

Therefore, from condition (3.5.9b), we can conclude that > 0.
Differentiating equation (3.5.9a) twice with respect to e at e = 0 and
using equation (3.5.2b’), we obtain

(v, HU+ c% (V,J)r=0. (3.5.3")

On the other hand, differentiating equation (2.2.22) with respect to
e and putting e = 0 leads to
(VuJ)i*-i-di (V,J)r=0. (3.5.4")
€

Hence subtracting equation (3.5.3') from equation (3.5.4') and using
(3.5.2b") gives

(V) (U =#) =0
or the similar parametrisation results
U=¢#=(V,nU = (V,r)r. (3.5.6')

From equations (3.5.2b), (3.5.2b’), (3.5.6), and (3.5.6') it follows that
U(0) and U/(0) are the same for the kth simple wave and the k-shock.
Since kth Riemann invariants do not change across a kth simple wave,
the change in a kth Riemann invariant across a k-shock is of third order
n e
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We also mention the following theorem for the exceptional case (23).
If two nearby states U, and U, have the same kth Riemann invariants
whale the kth characteristic is exceptional (i.e., (V, A¥®)) r®) = 0), then we
have the Rankine—Hugoniot relations with propagation velocity equal to
AE(T]) = AB)(U,), and consequently we have an exceptional discontinuity.

As was noted in Section 2.2, in the exceptional case A¥) becomes
one of the kth Riemann invariants. On the other hand, the nearby
states U and U, can be connected by a differentiable one parameter
family of states U(e) for which all kth Riemann invariants are constant.
Consequently, A*)(U (¢)) is a constant, say s, for all e. Accordingly, by
using the method just discussed, it can be proved that (V,2) UE)=0
li.e., U(e)oc r®)(U(e))], hence sU = AU for all e.

Integrating this equation leads immediately to the desired form
of the Rankine-Hugoniot relations.

We finally investigate the solution of an initial value problem.
Let us consider the initial condition at ¢ = 0,

U, for x<0
U(x,0) = O(x) = (3.5.10)
U, for x>0

in which we assume that U, and U, are constant vectors. The
solution for £>0 is concerned with the resolution of the initial
discontinuity at = 0 and is often called the generalised Riemann
problem. We note first that the solution U(,t) is a function of x/t
if it isunique. This can be seen as follows: if U(z, ) is a weak solution
satisfying the initial condition (3.5.10), the vector

U, = U(azx, of)

where « is any positive constant, is also a weak solution satisfying
the same initial condition. Hence, in order that the solution is
unique, U, = U(z,t); and this is true if and only if U is a function of
z[t only. Thus we see that the solution is given by a combination of
genuine shocks, centred simple waves, intermediate and exceptional
discontinuities issuing out of the origin.

It can further be shown that these waves divide the whole space-
time into n+ 1 constant states, U, U, ..., U, when U, and U, are
separated by a k-genuine shock or a centred simple wave of the kth
kind or, if the kth characteristic is exceptional, by an exceptional
discontinuity.
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Since U,,, can be expressed by a parameter ¢,,, say and U,
U, by ¢, and Uy_,, ..., U; by ¢, and U,, we obtain the relations

U, = Uy U,; €1,€, ..., €,)
U, = Uy(Ugy; 0,0,...,0)

which form n inhomogeneous equations for the n unknown
€1, €, ..., €, When U and U, are given. On the other hand, by virtue
of the condition

U(0) = ry), WUnertor for =€ =..=€=..=¢€=0,

Oe,,
and hence 0U, [de,, ...,0U,/0¢, are linearly independent at the origin
of the e-space. Therefore, according to the implicit function theorem,
a sufficiently small cube in e-space is mapped in a one-to-one way
onto a neighbourhood of Uj,. Thus we obtain the theorem proved
by Lax (23):

There exists a neighbourhood of U, such that if U, belongs to this
nesghbourhood, the generalised Riemann initial value problem has a
solution when each two intermediate states are separated by a genuine
shock or a centred simple wave or an exceptional discontinuity.

There is exactly one solution of this kind if the intermediate
states are restricted to lie in a neighbourhood of Uj,.

3.6. HyproDYNAMIC DISCONTINUITIES

Discontinuities in gas dynamics are governed by conservation laws
with the following forms for U and F':

p
U= U, (3.6.1a)
$pv + pe
Pz
F=| pvi+p (3.6.1b)
vo(3pV% + pe+p)

where p is the gas density, p the pressure, e the internal energy,
and v, the flow velocity in the laboratory system. From equations
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(3.3.3) and (3.6.1) we immediately obtain

[pt]=0 (3.6.2)
[p¥ v, +p] =0 (3.6.3)
[pB,(302 +e) +pv,] = 0 (3.6.4)

where ¥, = v, —A.
These equations are the conservation laws of mass, momentum, and
energy, respectively. The second equation may be written in the form

(pB2+p] = 0. (3.6.3')

Equations (3.6.2) and (3.6.3) or (3.6.3") which are in the same form
as for small disturbances will be called the mechanical relations.

Denoting the mass flux p&, by m and setting 7 = 1/p we can write
the mechanical relations in the following way:

mlr]—[v;] = 0
mfv,]+[p] =0

from which it follows in close analogy with small disturbance theory
that
(i) m=0, [o]=[p]=0, [1]#0
or
" o _ _[P] 6.5
(ii) m Bk (3.6.5)
The discontinuity given by (i) (i.e., m = 0) is called a contact
discontinuity and tends to the entropy wave in the small amplitude
limit. In this case we have ¥, = 0 (i.e., A = v,). Since v, is a character-
istic root, the contact discontinuity belongs to the class of exceptional
discontinuities. It is also obvious that particles do not move across
the contact discontinuity. If m is finite, given by equation (3.6.5),
then particles move across the discontinuity. In gas dynamics a
discontinuity of this kind is called shock. We shall define the side
ahead of a shock to be the side from which flow enters the shock, the
other side will be said to be behind the shock. States ahead and
behind the shock will always be denoted by the subscripts 0 and 1,
respectively, and for any @ its jump will be defined by

[Q] = QI_QO' (3.6.6)

In what follows the positive direction of the z-axis in the coordinate
system moving with the shock will be taken as the direction of flow
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so that quantities on the sides x <0 and x>0 are specified by the
subscripts 0 and 1, respectively. We now investigate the evolutionary
condition on the gas dynamic shock. The linearised equations for
the small disturbances 8p, 6p, and 8v, are given by

8V, +Nsv, =0 (3.6.7)
where 8V and N take the forms

(a/p)dp
8V = sz (368)

and

(3.6.9)

and where N = N(U).
The system of equations (3.6.7) is hyperbolic and N has the
eigenvalues

A =g, A® = +a, and A =§, —a. (3.6.10)

We have the general result that 8U is connected with 6V through
the equation

8U =V, 08V (3.6.11)
where V, U is the matrix
v, vy T 0Ov,
v,U=| ov, ov, =~ v,
uy,  Suy Gy
| ov, vy, T Ov,

The eigenvalues of A are identical with those of N and the eigen-
vectors E® are obtained from those of N through transformation
(3.6.11). The number of waves on either side of the shock depends
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on the relative magnitudes of @ and @,, the dependence being
illustrated in Fig. 3.2.

The number of outgoing waves is equal to n — 1 only in the shaded
block of Fig. 3.2, which implies the condition

Uy, >y, U, <ay. (3.6.12)

It is easy to see that the evolutionary condition in a gas shock is
equivalent to Lax’s condition, and that gas shocks belong to the class
of genuine shocks. It can also be shown that hydrodynamic contact
discontinuities are evolutionary.

7,1 b
4 3
@ / /
3 2
0 [«/s) ‘l"_:rf

Fie. 3.2. The number in each block indicates the number of outgoing
waves in gas dynamics.

In order to obtain the one-parameter expression for the gas
dynamic shock, we must use the energy conservation law (3.6.4).
Introducing the arithmetic mean (@) of any quantity @ which is
defined by
(@) = $(@1+Q) (3.6.13)

and using the mechanical relations we can re-write equation (3.6.4) as

follows:
[e]+<p>[r] =0 (3.6.4")

and we also mention here the identity
[PR]=(P)[Q]+[P1<Q>.

It is obvious that equation (3.6.4") reduces to dS = 0 in the limit
of an infinitesimal discontinuity.
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Since e is a function of p and =, equation (3.6.4’) implies the relation
between p and t which is usually called the Rankine-Hugoniot
relation. For example, in a polytropic gas eis given by e = pr/(y—1),
and equation (3.6.4’) takes the form

(ry=V2 7o) Py — (Tg—¥271) Py = O (3.6.4")
in which v is defined by

V2=———y_1.
v+1

Equation (3.6.4") is plotted in Fig. 3.3. The pressure p increases
monotonically as = decreases and becomes infinite as 7 tends to

el

F1a. 3.3. The Hugoniot curve in gas dynamics.

Toin = V27o. If we choose [r] as a parameter, p, is then determined
and the mechanical relations determine v, and X in terms of [r]
when the state ahead of the shock is given. The results are summarised
in Appendix D. However, as can be seen from the above discussions,
the Rankine-Hugoniot relation (3.6.4”) admits the expansion shock.

This, of course, can be excluded when the evolutionary conditions
(3.6.12) are taken into account (35). Namely, for the genuine shock,
by the theorem given in the previous section, the parameter
e=[7]<0 (i.e., the shock must be compressive).t On the other hand,
from the theorem (B.1) in Appendix B and equation (3.6.4'), it
follows that + decreases if and only if the entropy increases.

t Note that in the centred simple wave [7]> 0.
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We may also proceed by the usual argument as follows (3): from
the theorem (B.1) and the entropy condition, 7 must decrease, and it
then follows from conditions (3.6.12) that the shock is evolutionary.

Thus we can see that in a gas dynamic shock, the evolutionary
condition and the entropy condition are equivalent.

Finally we illustrate by some simple examples the boundary and
initial value problem in gas dynamics involving discontinuities.
One of the simplest cases is the piston problem in which a piston is
pushed with constant speed up into a tube of gas initially at rest. The
boundary condition is given by v, = u, at the piston. The solution
is given by a shock proceeding ahead of the piston. Since the gas is
initially at rest, v, = 0 and from (S,.2) in Appendix D we have

u, =v, = ¥ [L=V)Pe7y (Y=&, Y:@)
? ' Y +02 Do Do

where we refer to the coordinate system in which the shock moves
with a positive velocity, A> 0.

This equation determines Y in terms of u,, p,, and 7,. Introducing
Y thus obtained into (S..3) in Appendix D we find that

1 u

u 2
5Tt Jad+ i(‘l —pv2) . (3.6.14)

Another simple example is Riemann’s problem given by the initial
condition

X:

v, =0 for all

x

P = Dg, p=po for x>0
(Ps> pos P3>Dy) -
D =DP3, P=rs for z <0

The flow satisfying this initial condition is realised in a shock tube in
which a diaphragm separating two constant states of different
density and pressure is suddenly removed.

Since the number of boundary conditions # is equal to 3, the last
theorem in the previous section implies that there exist three waves
issuing out of the origin. Considering the velocity of the waves and
the density change across possible waves, we see at once that a
shock advances first followed by a contact discontinuity and finally
by a centred rarefaction wave.
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The changes of the flow velocity, the density, and the pressure are
given by
0 =8v,+Av, (3.6.15a)

P3—po=0p+Ap (3.6.15b)

in which & and A denote the changes across the rarefaction wave
and the shock, respectively.

We denote the states between the shock and the contact
discontinuity and between the contact discontinuity and the simple
wave by subscripts 1 and 2, respectively, and write

Prer _ Penn _y k=0,1,2
Pk T2 Dy ke o

Then equation (3.6.15b) becomest

BB g4,
Do

which, by means of (S;.1) and (R,.1) of Appendix D, can be considered
as a relation between 7; and 7,. Similarly, in view of (S,.2) and
(R,.2), equation (3.6.15a) reduces to the relation between 75 and 7,.

Thus we can solve these equations with respect to 5 and 7, and
determine p, and p, in terms of p,, p,, ps, and p;. The detailed method
of solution for the interaction of hydrodynamic waves is discussed by
Courant and Friedrichs (3). The solution of Riemann’s problem
enables us to solve the problem of the collision of two shocks by
identifying the time origin with the moment of collision.

3.7. NUMERICAL SOLUTION OF NON-LINEAR
HyPERBOLIC SYSTEMS

It is sometimes necessary that a numerical solution should be
obtained to a specific system of equations with given initial values.
Since solutions in closed analytical form are seldom known for quasi-
linear systems, some other method of solution must be found. To
resolve this problem we now turn to finite difference methods which
may be used in many different ways to obtain numerical solutions
to such problems. Of the many special numerical methods of solution
which exist (7, 24, 25,37) which usually utilise some special feature
of the problem in question, we will describe only that method due

t Note that p, = p,.
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to Courant et al. (4). Their method has the advantage of being
straightforward and general in its application, and uses a method
which is specially appropriate to our approach to hyperbolic systems.

The method is applicable to initial value problems for quasi-linear
hyperbolic systems in two independent variables and n dependent
variables.

Let us start by applying the method to a rectangular net of points
to emphasise the roles played by the characteristic curves of the system
and the domain of dependence of a point and then indicate how the
results may be extended to a curvilinear net of points provided the
net is nowhere tangent to a characteristic.

tv
t+At i
¢ A Ao Py
t- At 7
0 r-4r x z+A4x z

Fic. 3.4. Net points.

We choose our rectangular net of lines to be superimposed on the
(, t)-plane such that one family of lines is parallel to the z-axis and
the other family of lines is parallel to the t-axis. The lines are
assumed equi-spaced with  interval Az and tinterval A asin Fig. 3.4.

If the function v(x, t) is defined only at the net points (mAzx, nAt) in
the (x, t)-plane for m,n integers, then the values assumed by v(x,?) at
the points P; of Fig. 3.4 are

o8
<

(%,1)
P: v(x — Az, t)
B, v(x, t— At)
By v(x+ Az, t)
P;: v(x, t+At).
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The forward and backward space difference quotients at P, are written

v, = le[v(x+Ax, t)—v(x,t)] (3.7.1a)
and
v, = —Al; [v(x,t) —v(x — Az, t)], (3.7.1b)

respectively, and both approximate the partial derivative ou/dx
of a differentiable function u(x,t) whose values coincide with those
of v(z,t) at each net point. Similarly, the forward time difference
quotient at P, (the only one of interest to us in the initial value
problem) is written

v = é[v(x,t+At)—v(x,t)] (3.7.2)

and approximates the partial derivative du/df. With these ideas in
mind let us now consider the quasi-linear system

U+AU,+B =0 (3.7.3)

involving the independent variables  and ¢ and the column vector
U in the n dependent variables u,,%,,...,u,. As in Section 2.1, we
assume that the n eigenvalues A (¢ = 1,2,...,n) of matrix 4 are
real and distinct and hence that the system is totally hyperbolic.
Pre-multiplying equation (3.7.3) by the ith left eigenvector I of
matrix A corresponding to A we obtain

DU +19D AU, +ID B =0 (3.7.4)
which, since by definition

194 = 00, (3.7.5)

may be re-written

ING+AU)+19 B =0. (3.7.6)
There are n distinct equations of this form corresponding to the n
eigenvalues A% and in the ¢th equation displayed in (3.7.6) the

directional derivative
U, =U[+X00, (3.7.7)

shows that each dependent variable u; (j = 1,2,...,n) is differentiated

in the direction of the ith characteristic. Again, as in Section 2.1, the
tth characteristic direction is determined by
dx

"—i‘i‘ = )\(i) . (3.7.8)
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To apply these results we now examine the representative points in
the (z,t)-net illustrated in Fig. 3.5. If we denote the value of the
column vector U at a point P by U(P), then the initial data at time ¢
comprise the values of the vectors U(P),U(Q),U(R),... and we
require to determine U(P’),U(Q’), U(R’),... corresponding to the

¢
teat £ \R
t 7 SO ON
2 R[S,
0 r-Ax z T+Az z

F1e. 3.5. Characteristics through point Q.

time ¢+ At. For arbitrary values of net intervals Az and At the n
characteristics passing through @’ when traced backwards in time
will intersect the line through PR at points S;, S,, ..., S, which do not
all lie between P and R as in Fig. 3.5. In the nomenclature of our
previous work we may express this fact by saying that in general the
line segment PR will not contain the domain of dependence of the
point Q'. Since the solution is required to be evaluated at the mesh
points and all the initial data specified within the domain of
dependence S, 8, will influence the solution at @', it is clear that for
simplicity we must so choose Az and At that the line segment S, S,
lies within the line segment PR, and similarly for points adjacent to
@’. This condition is of fundamental importance and will now be
expressed more conveniently. Since in our finite difference approxi-
mation we have no knowledge of the solution between net points, we
shall first simplify the requirements regarding the domain of
dependence of Q' as follows. We select Az and At such that at all
points of interest the tangents to the characteristics at @ when
traced backwards in time intersect the line through P and R at
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points Sy, Ss, ..., S;, between P and R as in Fig. 3.6. For Az and At
small enough and suitably chosen this condition will also ensure that
the domain of dependence is contained within the segment PR.
Geometrically, this condition requires that the gradients of each of

PSS SioQ Sy R
Frc. 3.6. Approximations to characteristics through point @”.

the n characteristics at @’ should be bounded by the rays @'P and
@'R. This may be conveniently expressed by the condition that
maxl)\‘i’(Q')|<%, 1=1,2,...,n, (8.7.9)
for all points @’ under consideration.
Assuming that condition (3.7.9) is satisfied we now proceed to
apply the method of finite differences to equation (3.7.6) which,
using equation (3.7.7), we re-write in the form

19Q)U(Q)+1(Q')B(Q') = 0. (3.7.10)

We now replace the differentiable column vector U in equation
(3.7.10) by the discrete valued approximation vector V where at a
point P

V(P) = . (3.7.11)

L v.(P)

The unit vector s in the direction of the ¢th characteristic has
components
XONTHXO 14 20°
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and so the directional derivative in the 7th characteristic direction is
A6 1

s9.VU = U, + _7,
‘/1 +A(i)’ \/1 +A(t)’ !

or
1

The finite difference approximation to this directional derivative is
V(@) - V(S
Qs

but, from the geometry of Fig. 3.6, we easily find that

Q'S =TT A QQ
and so equating the two expressions for the ith directional derivative
we find that

0 - [V S0].
* Q'

Thus, equation (3.7.10) is to be replaced by the finite difference
equation

sO.YU =

sO. VU =

V(@) —V(S)
QQ’

The points S; will not usually coincide with net points and so we shall
approximate V(S;) by linear interpolation between the values of V
at the adjacent net points. Clearly, if the gradient of S;Q’ is positive,
S; will lie between P and @, and if the gradient is negative, S; will
lie between @ and R. Thus, for characteristics with a positive
gradient spatial derivatives will be determined by backward finite
difference quotients. Conversely, for characteristics with a negative
gradient spatial derivatives will be determined by forward finite
difference quotients. The time derivatives are always determined by
forward finite difference quotients.

Returning now to equation (3.7.12) we assume for convenience
that S; lies between P and @ and determine V(S;) by the expression

V(8;) = V(P)+[V(@)—V(P)](1-6) (3.7.13)

8,0
0= PQ

19(Q") [ ] +1(Q")B(Q') = 0. (3.7.12)

where
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Since we have the obvious results
S;Q =A"At and  PQ=Ax
we may combine equations (3.7.12) and (3.7.13) to obtain

(3.7.14)

For a quasi-linear system the quantities I/¥(Q’), A¥/(Q’), and B(Q’)
occurring in equation (3.7.14) are dependent on the solution at @’
and so are not known at this stage of the calculation. This difficulty
may be overcome by approximating them by the known values at
@ to obtain the following equation for V(Q’):

l(i)(Q’)

+19(Q) BQ) = 0.
(3.7.15)

Since the vector V(Q') involves the n unknown net values
(@), v5(@), ..., v,(Q’), equation (3.7.15) represents a single inhomo-
geneous equation connecting these quantities. There are n such
equations connecting the unknown vector V(Q'), each corresponding
to one of the n eigenvalues A and so the set of equations may be
solved uniquely for v,(Q’),v5(@’),...,v,(Q’'). Repeating this process
at all points adjacent to @' results in the determination of the solution
at the time ¢+ A¢. Successive applications of this method will enable
the solution to be advanced further in time.

The convergence of the discrete valued vector ¥ to the differentiable
solution U of system (3.7.3) as Ax and At tend to zero subject to
condition (3.7.9) has been established by Courant et al. (4) and will
not be discussed here.

The method is also applicable when the net of lines superimposed
on the (z,t)-plane is a curvilinear net as in Fig. 3.7. We assume that
the curves Iy, I, I, ... form a system of simple curves nowhere
tangent to a characteristic direction with points P,Q,R,... equi-
spaced along I,. Initial data are specified at P,Q, R, ... and we require
to determine the solution at points P’,Q’,R’,... of curve ;. By
analogy with the rectangular net, the separation of I, from I, and
the location of the points must be chosen so that the »n tangents to
the characteristics through @’ when traced backwards in time all
intersect I, at points S}, S;, ..., S, between P and R. As before, the
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functional values at the points S; are obtained by linear interpolation
between the adjacent net points on I, By direct analogy with
equation (3.7.12) we must now solve the n difference equations:

19(Q) [W] +IDQ)B@ =0, i=12..n,

(3.7.16)
where At is now the difference in ¢ between Q' and S;. Forward and

backward space difference quotients must be used as for the previous
case. An application of this method to all the net points on I,

F1c. 3.7. Curvilinear net.

adjacent to @' advances the solution in time to that appropriate
to the curve I,. By a repetition of this process the solution may be
advanced successively to the curves I, I, ... as far as is required.

Lax has proposed (22) a special finite difference technique involving
symmetric difference quotients which he has demonstrated enables
the numerical calculation of weak solutions and, in particular, flow
problems involving shocks. An alternative viscosity method is that
proposed by von Neumann and Richtmyer (29) and already
mentioned here. More recently a different technique involving
shock fitting has been discussed by Richtmyer (36) and Lewis (26).
The method of Courant et al. has recently been extended by Keller
and Thomée (16) to include mixed problems for quasi-linear hyper-
bolic systems in two independent variables.
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3.8. THE PrROPAGATION OF WEAK
DISCONTINUITIES ALONG RaYs

An interesting and important application of the theory of rays is
to be found in the propagation of small discontinuities along the rays
of a quasi-linear hyperbolic system (15). In a general quasi-linear
hyperbolic system the problem of determining the discontinuity
surface is linked directly to the problem of the determination of the
solution behind the discontinuity surface and in fact both must be
determined simultaneously. This problem is not present in the
linear case (2) where the propagation of an arbitrarily large discon-
tinuity along a ray presents no problem. However, by considering
only small discontinuities we shall show that a parallel theory exists
for the propagation of small discontinuities along rays.

We take as our starting point the divergence equations

U+V-F+B=0 (3.8.1)

where U and B are column vectors with the n elements u,, u,, ..., u,
and by, b,, ..., b, and where F(U) is an n-element vector valued column
matrix. If the unit vectors associated with the gradient operator are
e, e,,...,e,, wemayset F = FO 4+ F® 4 4 Fm where the vectors
comprising F® are parallel to e;. Using the result of equation (3.1.13)
we re-express equation (3.8.1) in terms of U, = oU/[dx: as follows:

U+V,FOU+B =0 (3.8.2)

where V, denotes the gradient operator in U-space acting on the
variables u,,%,,...,%, and where the summation convention has
been employed. If now we write V,F® = 4,, equation (3.8.2)
becomes the quasi-linear system,

U+A4,Uuy+B=0. (3.8.3)

The generalised Rankine-Hugoniot relations (3.1.11) determining
the jump in quantities u; appropriate to system (3.8.3) across a
discontinuity surface comprise » homogeneous equations. If then we
consider the propagation of small or weak discontinuities of u, into a
known state, then, for sufficiently small disturbances, these equations
describe a one-parameter family of quantities u; when related to the
known state. Let us now consider such a one-parameter differentiable
family of solutions of equation (3.8.3) depending on a parameter
and note that since the system is quasi-linear the matrices 4; and B
are also functions of e. Any one-parameter system may be used but
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if we consider the system
Ue) = U +€dU

Ae) = A;+€84,
and

B(e) = B+€6B
then the terms 8U, 84,, and 8B are simply the variations of U, 4;,
and B, respectively. Using this one-parameter family in equation
(3.8.3) and differentiating with respect to € at e = 0 we find that

(BU )+ (84;) Up+ Ay(8U )y +8B = 0. (3.8.4)

If a surface exists across which the solution is discontinuous as in
Fig. 3.1 then, identifying this surface with the wave front £(t), we
define the wave front by the equation

o(%,t) =0 (3.8.5)
which, if ¢;# 0, may be written

t=8(x), (3.8.6)
ie., p(x,t)=S8(x)—t. We now consider the variation matrices
8U(x,t), 84,(x,t), and 8B(x,t) on the wave front & (t) determined by
equation (3.8.6). Since (1) is a surface across which a discontinuity
can exist there will in general be such a set of functions to be defined

on either side of the wave front. If a quantity on the wave front is
identified by a bar, then

8U(x,S(x)) = 8U(x)
84,(x,8(x)) = 84,()
and

8B(x,S(x)) = 8B(x).

Now the derivative of a function Z(x, S(x)) = Z(») on the wave front
is given by the expression

(2)as = (L) +pi2),
(for both sides of the wave front) where p, = S,:, and so
(2)gt = (Z) = 2),.- (3.8.7)

Using this result in equation (3.8.4) and assuming propagation into
a steady state we obtain

(I—p; A,) (SU), = —{A,80)u+ (34,)Uy+5B},  (3.8.8)
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where to simplify the notation we have omitted the barsover 4,and U.
This set of equations is linear in 8U and is thus linear in the variations
of the n dependent variables ., u,, ..., u,. Equations (3.8.8) will be
called the variational equations and the vector U(e) at € = 0 will be
called the basic solution of the conservation system (3.8.1). We now
assume that the basic solution is continuous across the wave front,
the discontinuities that exist taking place only in the variational
quantities. So, differencing equation (3.8.8) across the wave front
and denoting the jump in a variational quantity so obtained by A,
we find that

(I—p;4;)(AU), = —{A4AU )+ (A4) Uy + (AB)}.  (3.8.9)

This is a set of » inhomogeneous equations involving the n unknown
variational quantities of the vector (AU),.

We now return to the generalised Rankine-Hugoniot relations
(3.1.11) which we saw, in the footnote associated with them, hold
also for equation (3.8.1) and differentiate them with respect to e at
e = 0 to obtain

[X(SU)—(%(wF)] +[XU—n~F]I‘%aj =0. (3.8.10)

Since the basic solution is assumed to be continuous across .#(t) the
jump in the second bracket is zero and thus the variational form of
the generalised Rankine-Hugoniot relations becomes

~ d
[)\(SU)—d—E(n-F)] =0. (3.8.11)
In terms of the A notation this becomes
X(AU)—g- [n-F]=0. (3.8.12)
€
Now, since n-F = n, F,, we have that
d OF; du;
a("'F) - ”%au de
or
d OF;
T (n-F)=mn, E—Su
and thus
d

o (n°F) = n, A,80),
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and so for a continuous basic solution
Using equation (3.8.13) in equation (3.8.12) we find the result
(M —n;4,)(AU) = 0. (3.8.14)

However, from equation (3.1.10) the propagation velocity A is

1= %2
Vel
whilst the normal n to #(t) is determined by
Ve Pt
n=—-- and so n, = ——.
Vel t Vel

Differentiating equation (3.8.5) with respect to x* gives
PaitPrtp =0
or, by equation (3.8.6),
Prit+Pipr =0
which, together with the expressions for X and n;, enables us to
rewrite equation (3.8.14) as
(I-p,A)(AU)=0. (3.8.15)

A comparison of equations (3.8.9) and (3.8.15) shows that the
coefficient matrix on the left-hand side is identical for both systems
of equations. These two systems of equations can only be consistent
if a special relationship exists between (AU) and the right-hand side
of equation (3.8.9). To derive this relationship we start by taking
the transpose of equation (3.8.15) to obtain

(AUY (I-p;4,) =0

where the prime denotes the transposed matrix. Post-multiplying
this by (AU), we find that

(AUY (I-p; A (AU), = 0. (3.8.16)
However, by pre-multiplying equation (3.8.9) by (AU)’ we obtain
(AUY (I —p; 4;) (AU), = — (AU) {A(AD)+ (A4;) U+ AB}.
(3.8.17)

If the conservation law system is symmetric hyperbolic (9, 12) the
coefficient matrix is symmetric and thus (I—p;4,)' = -p;4;)
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when, by comparison of the right-hand sides of equations (3.8.16) and
(3.8.17), the desired relationship is seen to be

(AU) {4, (AU) i+ (A4;) Uy + (AB)} = 0
which, since (AU) = (AU), may be written
(AUY {A(AU) i+ (A4, U+ (AB)} = 0 (3.8.18)

where, for simplicity, the bar has been omitted. Expressed in
words the condition is that (AU)" should be orthogonal to the
right-hand side of equation (3.8.9). This relationship is of funda-
mental importance and will be called the orthogonality relation.
This result applies only when the system (3.8.3) is symmetric
hyperbolic. If the matrices 4, are simultaneously symmetrisable by
pre-multiplying equation (3.8.3) by A4, then the transformation
applied to equation (1.5.4) will reduce the system of the form (3.8.3)
to a symmetric hyperbolic system. (We note that the system
A;Uy+B=0,7=0,1,...,m is symmetric hyperbolic when A; = A;
and Y7, A" A4; is positive definite for some set of {A%}.)

This orthogonality relation will now be re-written in a more
convenient form which displays the propagation characteristics of
the weak discontinuity AU along a ray. We start by observing that
since AU is determined by a homogeneous system of »n equations
(3.8.15), the determinant of which we assume to have rank r = n—1,
the vector AU is unique apart from a multiplicative constant pu.
Setting AU = uW, where W satisfies equation (3.8.15), the ortho-
gonality relation becomes

W A(pW)u+ W (AA4;) U+ W'(AB) = 0
or
WA, Wygt uW'A; W+ W'(AA,) U+ W/(AB) = 0. (3.8.19)

Now,
d du,
Ad; = [a Ai] = [(Ai)u,ge‘]
which, since the basic solution is continuous, reduces to

AA'L' = (Ai)u, (Aur)
and, similarly,
AB = (B)u, (Aur) .

Since Aw, is the rth element of AU we have the result that

Aur = pw,
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where w, is the rth element of W and so equation (3.8.19) becomes
W,Ai W’*’“zi+ (W’A u’z""w w’ ( z)u' lZvi +w, W,(B)u,)f“’ =0.
(3.8.20)

This important equation determines the variation of the scale factor
w and hence the variation of AU. Although equation (3.8.20) appears
to be a complicated partial differential equation we shall show that it
simply corresponds to differentiation of u along a ray of the system
(3.8.1).

To show this we first recall equations (1.7.8) which determine the
rays of the system and, in particular, the equations

dxt oH
—_— ) = cee <O, 1
s~ ap, (r=0,1,...,m) (3.8.21a)
and
dqp m  oH
~T = .8.21
Z ,310‘ =0. (3.8.21b)

Since 2 = t we have from equatlon (3.8.21a) that dt/ds = 0H [0p, and
so, adopting the time ¢ as parameter along a ray, we note that
dsdx* dsoH .
Ed_szzt@ (@=l,2,...,m)
or
dxt  (0H\"!0H
=] = . .8.22
7= () m G-LEem (38.22)
This may be re-written in the vector form
e _ (@
dt  \op,
Note that from equation (3.8.21b) and the fact that p, = — 1 we have

oH
—p- 8.24
o~ P Vo (3.8.24)

The function H is determined by equation (1.7.2) and, since

0
a—;;=sx‘=pi’

-1
V,H. (3.8.23)

with p, = — 1, is seen to be given by
H=|pyI+p;4;| =0, (3.8.25)
which is simply the coefficient matrix appearing in equations (3.8.9)

and (3.8.15). It is also the characteristic determinant which deter-
mines the characteristic manifolds of the system (3.8.1). Using this
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expression for H in equation (3.8.22) and employing the summation
convention we find that

i
(g—pﬂo) % —a H, (i=12..,m) (3.8.26)
where, as in Section 1.5, a{%) is the element of 4, in row [ and column
m and where H,, is the cofactor of H corresponding to row ! and
column m.

Returning now to the coefficient of the first term of equation
(3.8.20) we expand it using the summation convention to obtain

WAW =walw,,. (3.8.27)

However, since the equations (3.8.15) are homogeneous and are
assumed to have rank n—1 the elements w, and w,, are expressible in
terms of the cofactors of a particular row of H. In particular, if it is
the jth row we have, apart from a multiplicative constant, that

wk = f‘[fk’ (3.828)
Using this result in equation (3.8.27) we find that
WAW =a¥) H,H,, . (3.8.29)

By virtue of Jacobi’s theorem on determinants we may write

H,H,, = H,H, (3.8.30)

m

and, since the coefficient matrix is symmetric, H; = H; when this

becomes
H;H,, = H,H,,. (3.8.31)

Inserting this result in equation (3.8.29) gives
W AW = Hyalf) B,
which, because of equation (3.8.26), may be written

o) o
op,) dt -~
Applying this to equation (3.8.20) and setting dx/dt = s gives

fg,.(%‘:) §Vu+ (W A; Wa+w, W(A,), Uu+w, W(B), )= 0.
(3.8.33)
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However, the directional derivative s-Vu = du/dt is simply the
derivative of u along the ray s with parameter ¢ and so we arrive at
the final important form of equation (3.8.33),

”(aﬂ) + (WA Wi+w, W(A,), Us+w, W(B), )p=0
(3.8.34)

where w;, = Hj;. This is a first order ordinary differential equation
determining the variation of u along a ray as a function of ¢ and,
since Auy = pwy, it also completely determines the variation of the
weak discontinuity AU along a ray.}

Sometimes it is useful to employ the notion of the expansion ratio
of a ray which finds application in geometrical optics and to modify
equation (3.8.34) to incorporate this function. Before we introduce
this ratio let us first note that differentiating equation (3.8.32) with
respect to z° and employing the summation convention we obtain

)

(WA, W)y = V-{H,-,-(%)s} :

or

So, expanding the right-hand side of this equation and treating the
term W’'A, W as the product of W’'A4, and W, we see that

WA W, = Hj,.(-;% v-s+s~v{larj,(%’)} — (WA W.
) 1}

(3.8.35)
Using this result in equation (3.8.34) we obtain

) 22

+10, WA, U0, W(B)y = 0

t In the special case of a linear equation when the 4; are independent of U
and for which B = CU with C independent of U, (4,),, = 0, and (C),, = 0
and w, W'(B),, = w, WCO(U),, = W CW. Equation (3.8.34) then becomes

d
H,j("’f) W WA, Wat CWYp = 0.
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and, dividing by H;;(0H|dp,) and setting
oH\ 1 0H ,
o= (G () -or a0
+ w, W,(Ai)u, Uz‘ + w, WI(B)ur} ’

this finally becomes
% +{V-s+R(t)}p=0. (3.8.36)

Equation (3.8.36) is the simplest form of equation that could result
from the orthogonality relation when written in terms of V-s. (It

e G S i
H H iy . n
n _\Ab‘?j _____ \4S,

Sty s(t) Aty

Fic. 3.8. Ray tube.

may happen that R(f) also contains some multiple of V-s when
equation (3.8.6) would then become modified by the replacement of
V-s by k() V-s.)

To proceed further we must examine the term V-s, and to do this
we employ the definition of the divergence operator (27) at point P,

. 1
Vs =A}'}T0—A_V s-ndS (3837)

surface of AV

where AV is a volume element containing P and dS is a surface
element of AV. If now P is a point on the wave front &(t) at time ¢
and we consider an element AS of the wave front surface such that
AS contains P, the rays s through the boundary of AS form a small
ray tube containing P. At times ¢, and ¢, (f, < <#,) this ray tube cuts
the areas AS; and AS,, respectively, from the wave front as shown in
Fig. 3.8.

Identifying the volume AV with the volume of the ray tube
between £ (t,) and £ (t,) we see at once that the contribution of the
integrand s-n over the sides of the ray tube must be zero by the
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definition of the tube. Thus the only contribution from the integrand
comes from the tube ends. Since by definition the wave front
velocity A is

A=n-s (3.8.38)
and is not necessarily constant we may write equation (3.8.37) as
Vos = lim - [,(ASy) — A (AS,)]. (3.8.39)
AV—>0 AV

For convenience we choose ¢, = t— At and ¢, = t+ At when we may
write approximately

« <« AX
« o« AX
Ry =Xt o At
(3.8.40)
88
AS, = AS_Zi At
and
oS
AS, = AS+EAt

where, to first order, AX and 8S are the changes in A and AS,
respectively, in time A¢. Using expressions (3.8.40) in equation
(3.8.39) and noting that AV = 2X At AS we find that

. [(AX]At) | (8S]Af)
V-s=1 + . 3.8.41
Jm (550040457 (3840
AS—>0
Introducing E(t) the expansion ratio along a ray defined by
ds
E@) = d_STo (3.8.42)

where dS, is the area of a surface element cut out by a ray tube on an
initial wave front manifold at time ¢ = ¢,, we may rewrite the second
term of equation (3.8.41) as follows.

By equation (3.8.42)

AS = AS, E(t) (3.8.43)
and so, using equations (3.8.40), we may write 68 as
88 = AS,—AS
or (3.8.44)

88 = ASG{E(t+At)— E(t)} .
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Using equations (3.8.43) and (3.8.44) in equation (3.8.41) gives
(AX/At) N (LE(t +At)— E(2)]/At) ;
A Et)
and so, finally, in the limit as At 0,
(dA/dt) 4 (dE/dt)}
A E

which may be more conveniently written as

V:s = lim {

At—>0

ves-|

Ves= —log{E Xct)} - (3.8.45)

Using this result in equation (3.8.36) we find that

‘fi_ft"+{_1og{E t)}+R(t);,u =0. (3.8.46)

On integration we find that the variation of u along a ray is deter-
mined by the expression

~ ~ t
E@®)X(t)(t) = E(to) X(tg) 1sty) exp f (—R@)de,  (3.847)

lo
which is the required result.

3.9. GEOMETRICAL ACOUSTICS—
THE THEORY OF WEAK SHOCK WAVES

We take as our example of the propagation of discontinuities along
rays the propagation of weak hydrodynamic discontinuities discussed
by Keller (17) and termed geometrical acoustics or the theory of
weak shock waves. This example is particularly interesting since it
illustrates the application of the ideas of Section 3.8 to a system of
equations for which the matrices A; are not symmetric but which
are simultaneously symmetrisable. For simplicity, we shall consider
only the two-dimensional isentropic case, the extension to the three-
dimensional non-isentropic case being immediate and follows our
derivation in all respects apart from one point which we remark on
later. The two-dimensional isentropic equations,

op
3t+pV v+v-Vp=0

(3.9.1)

o
E-H) Vv+ VZ =0
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where v is the fluid velocity vector, p is the fluid density, and Z(p) is
the pressure, may be written in the matrix form

U+4,U,=0 (3.9.2)
where we have used the result V&# = 2, Vp and where
P _ oY p 0
U=| » |, 4, =] ptZ, v 0 |,
Uy 0 0 v
Uy 0 p
and 4, = 0 v, 0 |. (3.9.3)
pZ, 0 v,

Let us first determine the rays of the system when we see from
equation (1.7.2) and the matrices defined in (3.9.3) that

(Po+Pv) P1P PP
H=| p,p'%, (po+pv) 0 , (3.9.4)
2 0 (Po+Pv)
when the matrix equation H = 0 becomes
H=(py+pv)[(po+Pv)?:—-Z,p*] =0. (3.9.5)
(We note that on the wave front ¢(x,f) =S(x)—¢ and so
Po = ¢, = —1.) This equation has three roots, the root determined

by the zero of the first factor representing a contact discontinuity
and those determined by the zeros of the second factor representing
shocks. We shall consider only the roots corresponding to

(Do +P'v)2_9}P2 =0
or (3.9.6)

(p-v=1)= ta\p?
where we denote the sound velocity by a. We see from equation
(3.9.4) that the discontinuity surface normal n and speed A are

P s 1
n=-— and A= —= (3.9.7)
r’ Vp®
where Vp? is non-negative. Considering only the advancing distur-
bance we shall take the positive sign when we see that V,, H becomes

V,H = 2a\p*(v—an). (3.9.8)



3.9. GEOMETRICAL ACOUSTICS 161

We saw in Section 1.7 that the ray, which we shall denote by s, is
proportional to V,, H and so choosing the constant of proportionality
equal to (— 2a2~/1_>L2)‘1 the vector s becomes

s = (n—g) . (3.9.9)

The parameter along s is of course now no longer the time ¢ as in
Section 3.8 and will now be denoted by ¢ when an expression of the
form s-Vy becomes
dx
s ==, 9.1
Vx o (3.9.10)
a directional derivative of x along the ray s with o as parameter.
Returning now to the propagation of a weak discontinuity we see
that although the matrices 4; are not symmetric, equations (3.8.9)
and (3.8.14) are still valid. Thus, from equation (3.8.15) and matrices
(3.9.3) we have

(I=pv)  —pip —Pap Ap
-p1ptg, (1-pv) 0 Av, | =0
—pep' Y, 0 (I-p-v) Av,

(3.9.11)
when in terms of (Ap) as parameter we find that Av = —nap~1(Ap)
and so

Ap
AU =| —mnjaptip |. (3.9.12)
—nyap~lAp

~

We see that the coefficient matrix (I —p;4;) becomes symmetric
when pre-multiplied by M where

% 0 0
M= 0 p?2 0 (3.9.13)
0 0 p?

and so the orthogonality relation (3.8.18) becomes modified in our
case to the form

(AUY{MA AU+ M(AA,) U, = 0. (3.9.14)
Expanding the first part of the orthogonality relation, we find that
(AUY MA(AU) . = Z,(Ap) v+ V(Ap) + pZ,(Av) - V(Lp)
+Z,p(8p) V- (Av) + p2(Av)- (v-V(Av)). (3.9.15)
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To determine (A4;) we note that

2, 1 1
A(Fp) = ;A(%)—?%(Ap). (3.9.16)
However, since & = #(p) we have, differentiating with respect to
x¢, that

D=, py

and so now differentiating Z, with respect to ¢ at e =0 and
differencing the result obtained across the discontinuity surface
e = 0, we find that

(AP)y = (AP,) pyu+P,(Ap)s. (3.9.17)

Differentiating & = 2(p) with respect to € at e = 0 and differencing
the result across the discontinuity surface ¢ = 0 we obtain

(AP) = 2,(Ap) (3.9.18)

which used in the left-hand side of equation (3.9.17) gives the
desired result
(Z,)21(Bp) = (AZ,) pys
or
1 ,
(AZ,) = P—,(%h« (Ap) (t=1,2). (3.9.19)
Using equation (3.9.16) and equation (3.9.19) with + = 1 together
with the matrix 4,, we see that (A4,;) may be written

Av, Ap O
Ad) = | Uppe) ™ (Z)m—p2Z]Ap Aoy O | . (3.9.20)
0 0 Ay
Similarly, using ¢ = 2, we see that (A4,) may be written
) Av, 0 Ap
(Ad,) = 0 Av, 0 |.(3.9.21)

ppa) (P —p2Z,]Ap O Av,

P

The second group of terms in the orthogonality relation (3.9.14) then
become

(AUYM(AA,) Uy = Z(Ap) (Av-Vp) + Z(Ap)2 V- v + p¥(Av)- (Av- V)
+(Ap) [pAv-V(P)— 2P, Av-Vp]. (3.9.22)
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Using the expression for Av obtained in equation (3.9.12) and express-
ing the orthogonality relation in terms of s, we see, after division by
a3(Ap), that

—2S'V(Ap)+{—ZS'V(I«-I-%S'VP—V'S

+v~V(2) +&1- n (n-Va)} (Ap) = 0. (3.9.23)

Applying equation (3.9.10) to this result we see that it is a first order
ordinary differential equation which may be integrated immediately
to give the final result

[a"'(ﬁ:P)z] _ [a“(AP)z] expf”{_v.ﬁv.v(%)+$n-(n-Va)} do.
prodo e (3.9.24)

Using equation (3.9.18) we may obtain the equivalent expression for
(AZ) by making the substitution (AZ) = a*(Ap). This expression
completely determines the variation of all the jump quantities as
they are propagated along a ray.

Had the three-dimensional non-isentropic case been studied, the
jump equations corresponding to our equation (3.9.11) would have
resulted in the expected result AS = 0, where § is the entropy, and
so the jump equations would reduce immediately to a set of four
equations involving Ap, Av,, Av,, and Aw,;. Similarly, the system
corresponding to equation (3.8.9) could be solved for (AS), and
reduced to a set of four equations in (Ap), (Av,),, (Avy),, and (Avy),.
The coefficient matrices for the vectors (AU) and (AU), that then
result are identical and can be made symmetric as was done in our
example. Thereafter, the solution follows ours in every detail and
the final result is identical with our equation (3.9.24) provided the
vectors are considered to be three-dimensional vectors. It is interest-
ing to note that the entropy term entering through the equations
corresponding to (3.8.9) cancels and does not appear in the final
result. The term V-s which was discussed at the end of Section 3.8
is seen to arise quite naturally in the final result.
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! THE FUNDAMENTAL
% EQUATIONS AND
CHARACTERISTICS

4.1. Basic EQUATIONS AND ASSUMPTIONS

MAGNETOHYDRODYNAMICS deals with the macroscopic interaction
between the motion of a conducting fluid and an electromagnetic
field. The basic assumptions comprise two parts; the space-time
scale necessary for the hydromagnetic description to be applicable
and the constitutive equations of matter. We summarise these
assumptions as follows.

The space-time scale

(A.1) ew[dmo L1
(A.2) (Vjey<1
and

(A.3) AL<1

in which ¢ is the dielectric constant, o the conductivity, ¢ the velocity
of light in a vacuum, and A is the mean free path. The frequency,
fluid speed, and length characterising the hydromagnetic phenomenon
under consideration are denoted by w, V, and L, respectively.

The local constitutive equations in a coordinate system momen-
tarily moving with the conducting fluid are, when written in Gaussian
units,

(A.4) D = ¢E

(A.5) B =uH
and

(A.6) j=oE

where D is the electric displacement vector, E the electric field vector,
B the magnetic induction vector, H the magnetic field vector, j the
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current, and u the magnetic susceptibility. Assumption (A.6) is the
familiar ohms law. Tn what follows we assume that e, u, and o are
real constant numbers. The basic equations of magnetohydro-
dynamics comprise the equations for the electromagnetic field
together with the hydrodynamic equations with the Lorentz force
as the external body force. Under the assumptions mentioned above,
these equations in an inertial system have the following form.

The equations for the electromagnetic field in the conductor
Equation for the magnetic field:

aa—ft1= V x [v x H]+ (c?/4mpo) VEH (4.1.1)
V-H=0, (4.1.2)

where v is the flow velocity of the conducting fluid.
Equation for the electric field:
E = jlo—(nfc)vx H. (4.1.3)
Equation for the current:
j=1(c/4n)VxH. (4.1.4)
Equation for the charge p*:
p* = —(1/4mc)V-[vx H]. (4.1.5)

Equation for the electric displacement:
D=¢E+ (5" D1y« H). (4.1.6)

Equation for the magnetic induction:
B =uH. (4.1.7)

Equations (4.1.3), (4.1.6), and (4.1.7) follow from (A.4), (A.5), and
(A.6) as a result of the Lorentz transformation (71) and (A.2).
Equation (4.1.4) is obtained from the Maxwell equation (1.8.1a) and
(A.1), and the Maxwell equation (1.8.1b) and equation (4.1.3) imply
equation (4.1.1). Equation (4.1.5) may be derived from the Maxwell
equation (1.8.1d) together with equations (4.1.3) and (4.1.6).
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The equations for fluzd motion
The continuity equation:

9p
E-{-V (pv) = 0. (4.1.8)

The momentum equation:
p(%+(v~V)v)=’c—ijH—Vp+V:H (4.1.9)

where p is the density, p is the pressure, and II the stress tensor is
given by equation (1.9.2b).

The thermodynamic equation
The energy conservation law:

%V+V-q =0 (4.1.10)

where W the total energy and q the heat flow are given as follows:
W=%pvz+§#;H2+pe (4.1.11)

where e is the internal energy of the fluid per unit mass and

q = pv(3v* +e+p/p) + (n/4m) Hx [v x H]

—(c*/4mpuo) Hx [Vx H]—v: II—xVT (4.1.12)
where y is the thermal conductivity and 7' is the temperature.
Equation (4.1.9) is the momentum conservation law and may be
brought into conservation form by writing

M—V:T:O (4.1.13)
ot
where T is the sum of the two tensors T and T, The momentum
stress tensor for fluids T is equal to the tensor T(7},) of equation
(1.9.2a), whilst T is the magnetic part of the Maxwell stress tensor
and takes the form

TH = (u/4m) (H; H,— §H?8y,), 4.k =1,2,3, (4.1.14)
where the H; are the components of the vector H. We note here that
equation (4.1.1) may also be written in conservation form as

aai;'+V:S=o (4.1.15)
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in which the tensor S is given by
drpo) oxk ’

where the v; and z* are the components of the velocity v and the
position vector ¥, respectively.

The hydromagnetic system of equations may be expressed
alternatively by using the conservation laws (4.1.8), (4.1.10), (4.1.13),
and (4.1.15) supplemented by the equation of state for fluids since
these equations constitute a complete system of equations for the
hydrodynamic quantities and the magnetic field vector H. From
this point of view equations (4.1.3) to (4.1.7) should be regarded as
the definitions of E, j, p*, D, and B (70).

Sy = Hyv— Hyv,— k=123, (41.16)

4.2. THE ADIABATIC REVERSIBLE SYSTEM
AND THE LuNDQUIsT EQUATIONS

Considering an adiabatic reversible fluid implies that o = oo,
{={ =0, and x = 0 and that p is given by equation (1.9.4d) as
p = A(S)p?. We then have the following system of conservation
laws:

oH
a7 = 4.2.1
where S(S;,), given by equation (4.1.16), reduces to
S = Hyv — Hy vy, (4.2.1b)
V-H=0, (4.1.2)
dp
5+V (pv) =0 (4.1.8)
and
9(pv)
= 2.2
5 -V:T=0 (4.2.2a)

where T(7);) of equation (4.1.13) becomes

Ty = H H,— $H?8,) — (p8y. + pv; vy - (4.2.2b)
Also,
3;:’ +V.g=0 (4.2.3a)
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where W is still given by equation (4.1.11) as
— 12 a P o 4.1.11
w %pv+8ﬂ_H+pe (4.1.11)
and where g now takes the simplified form
- 2 P L
q—pv(%v +e+—)+( )Hx[va]. (4.2.3b)
P 4
It can easily be shown that this system of conservation laws may be
brought into the form known as the Lundquist equations (70) and

written
oH

W_VX[VXH]=O (4.2.4)
0
(&+V'V)p+pV'v=0 (4.2.5)

0 1 ® _

(gt+v-V)S= 0 (4.2.7)

V-H=0. (4.1.2)

The entropy conservation law (4.2.7) follows directly from the energy
conservation law (4.2.3a) by use of equations (4.2.4) and (4.2.6). The
equations (4.2.4), (4.2.5), (4.2.6), and (4.2.7) constitute the system
of equations for H, v, p, and S while equation (4.1.2) may be regarded
as the restriction on the initial conditions since, if it is valid initially,
then by equation (4.2.4) it is true for all time.

4.3. THE CHARACTERISTIC EQUATIONS

Equations (4.2.4) to (4.2.7) may be written in matrix form (see
Appendix E) and, according to the general theory of Chapter 1,
we introduce a characteristic manifold through the equation
o(x,t) = constant which may be identified with a wave front. Denoting
infinitesimal jumps of p, v, H, and S by 8p, dv, 8H, and &8,
respectively, it follows directly from the substitution (1.6.25’) and
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equations (4.2.4) to (4.2.7) that
(Fe,)dp+pdv, =0, ' (4.3.1)

(?cn)p8v+a2n8p+%n88’+(p/47r)(H~8H)n—(,u/4w)Hn8H= 0,

(4.3.2)

(Fe¢,)H—H,8v+Hé8v, =0, (4.3.3)
and

(Fc¢,)88=0 (4.3.4)

where n is the unit normal to the wave front given by equation
(1.6.24) as n = Vyp/|Vep|, and the subscript n denotes the normal
component, namely, v, = v-n, etc. The velocity of the wave front
Ais, by equation (1.6.23), A = — ¢,/ | V| and c,, is the speed of the wave
front relative to the fluid

c, =1|A—7,]. (4.3.5)

The — and + signs of ¢, in equations (4.3.1) to (4.3.4) correspond
to the negative and the positive values of —A+wv,, respectively.
Instead of A, T ¢, will be considered as the characteristic root of these
equations. The constraint (4.1.2) reduces to the continuity of the
normal component of magnetic field across the wave front,

$H, =0. (4.3.6)

This is compatible with the normal component of equation (4.3.3).
Hence, inserting equation (4.3.6) into equations (4.3.1) to (4.3.4)
and denoting by the subscripts ¥y and z the components of §H and
8v transverse to n and orthogonal to each other we obtain seven
equations for seven unknowns, 8H,, 8H,, év,, &v,, v,, 8p, and 8S; ¢,
is given by the roots of the secular equation.

From equation (4.3.4) we immediately have one root

¢, =0. (4.3.7)
If ¢, differs from zero, then equation (4.3.4) leads to the solution
38§ =0. (4.3.8)

Insertion of equation (4.3.8) into equations (4.3.1) to (4.3.4) results in
the equations for 8p, 8v,,, 8v,, 8v,, 8 H,, and 8 H,. Since we are considering
the equations at an arbitrary point on the wave front, it is always
possible to refer to a local coordinate system introduced such that the
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unit vector along the z-axis may be identified with the unit normal
to the wave front and the z-component of the unperturbed magnetic
field H, is equal to zero.

Equations (4.3.1) to (4.3.3) then take the form

(Fec,)8p+pbv, =0, (4.3.1)
(Fc,)pdv,+a2dp+ (u/4m)H,6H, =0, (4.3.9)
(Fc¢)pdv,— (u/4m) H,8H, = 0 (4.3.10)
(¥¢,)8H,+ H,év,— H dv, =0 (4.3.11)
(Fe,)pdv,—(u/4m)H,8H, =0 (4.3.12)
and
(Fep,)0H,—H,8v,=0. (4.3.13)
From equations (4.3.12) and (4.3.13) we have
¢, =b, =A/%g;“2” . (4.3.14)

We call b, the Alfvén speed.
From equations (4.3.1) to (4.3.11) we obtain

¢y = ¢; = [${(a2+b%) + V(a2 +b2)2 — 4a2b3}]V2  (4.3.15)

and

Cn = ¢, = [H(a2 +52) —\(a2 + B2E—daPbI2  (4.3.16)

where b = yuH?/4mp and a is the sound speed. We note here that
¢, >c,. Thus all the characteristic roots A are real and distinct and are
given by the equations

A=, tc, (4.3.17a)
A=vy, ¢, (4.3.17b)
A=uv,+b, (4.3.17¢)
A=uv,, (4.3.17d)

in which the + and — signs of ¢,, etc., correspond to the — and
+ signs of ¢, in equations (4.3.1), etc., respectively. In this sense,
the system of equations in magnetohydrodynamics is symmetric
hyperbolic. The waves corresponding to equations (4.3.17a,b,c, and
d) are called the fast wave, the slow wave, the transverse, and the
entropy wave, respectively, and the corresponding small jumps 8p, év,
8H, and 88 are determined as follows (54, 55). The matrix represen-
tations of them (48) are given in Appendix E.
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(¢) MAGNETOACOUSTIC WAVES
(THE FAST AND THE SLOW WAVES)

Let us assume that c, is neither equal to b, nor to zero. The
equations (4.3.4), (4.3.12), and (4.3.13) imply that

88 =8H,=38v,=0. (4.3.18)
From equations (4.3.1) to (4.3.11) we easily find that
8p=ep (4.3.19a)
Sv, = (:L ) (4.3.19D)
8v, = e(Fc,)b,b,/(c2—b%)sgn(H, H,) (4.3.19¢)
and
8H, = eH,c2/(c2 —b2) (4.3.19d)

where e is a parameter characterising the smallness of the jumps,
b, = «/pH [4mp, and c, takes either the value ¢, or ¢, The above
solutlons mdlcate that the flow velocity and the magnetic field vary
only in the (z,y)-plane and do not rotate across the wave front. We
note here the useful relation

(2 —a?) (¢ — b2) = ek (b3 —b2) (4.3.20)
which implies the following inequalities:
¢, > max (a,b,) (4.3.21a)
and
¢, <min(a,b,). (4.3.21b)

The equality sign can hold only if b = b,, namely, the transverse
component of the magnetic field is zero. In this case the roots ¢, and
¢, coincide with the sound speed and the Alfvén speed b,, and hence
give rise to the name magnetoacoustic waves. However, for the root
¢, = b,, the solutions (4.3.19) do not hold, since in deriving these
solutions we have assumed that ¢, differs from b,. If b, is equal to
zero, then ¢, becomes a* = Va2 + b whilst ¢, reduces to zero. Since
we have assumed also that ¢, is not equal to zero, solutions (4.3.19)
do not hold for the latter case. These degenerate cases for which
equations (4.3.19) are not valid will be treated separately in Sections
(¢v) and (v).

(¥) TRANSVERSE WAVES

If ¢, is equal to b, and differs from ¢, ¢, and zero, then equations
(4.3.4), (4.3.12), and (4.3.13) lead to the solutions

88 =0 (4.3.22a)
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and

_ H,
v, =7F LlHl
x

47
where the ¥ signs in equation (4.3.22b) correspond to the F signs
of ¢, in equations (4.3.12) and (4.3.13), respectively. It then follows
from equations (4.3.1) and (4.3.9) to (4.3.11) that

8p =8v, =dv, =08H,=0 (4.3.22¢)

and consequently we also have 8p = 0. The solution may be written
in vector form as

SH, (4.3.22b)

o

SH=enxH (4.3.22d)
Cge [t (e
="Fe 47P(|Hx|)nXH, (4.3.22¢)

where € is a parameter characterising the smallness of the jumps.

Since density, pressure, and the normal flow velocity do not
change across the wave front, the wave is non-compressive. On the
other hand, in view of the relation

S(H?) = 2H-SH = 0, (4.3.22f)

the absolute value of the magnetic field remains constant and there-
fore only the flow velocity and the magnetic field rotate across the
wave front. Waves of this kind are called transverse waves. We here
add a remark about the Alfvén wave in an incompressible fluid. The
necessary modification for this case is to set 8p equal to zero in
equation (4.3.1) and to replace a2 8p in equations (4.3.2) and (4.3.9) by
3p. We then immediately have that dv, = 0; consequently, from the
pairs of equations (4.3.10), (4.3.11) and (4.3.12), (4.3.13) we find

c,=b, (4.3.23a)
and .
- |r H

8'01 =+ Zﬂ'_p lHASiIt (4.3.23b)

provided ¢, #0, the subscript ¢ denoting the component transverse
to the normal to the wave front. The remaining equation (4.3.9)
gives the pressure change

&p = — (4{ ) H,5H,, (4:3.23c)
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and thus the pressure changes such that the total pressure p*, which
is the sum of the fluid pressure p and the magnetic pressure uH?/8m,

remains constant, i.e.,
dp*=0. (4.3.23d)

Equation (4.3.23b) may be written in a manner analogous to
equations (4.3.22d,e) as

0H = en* (4.3.23¢)
H

=Fe [t Tz px
Ww=7Te dmp [HL] n (4.3.23f)
where n* is an arbitrary vector orthogonal to n. The existence of a
wave of this kind was predicted earlier by Alfvén, and is called the
Alfvén wave. The Alfvén wave is very similar to the transverse wave;
however, it should be noted that across the Alfvén wave the absolute
value of the magnetic field and the fluid pressure may change. It
is also interesting to note that for Alfvén waves, ¢, = b, is a double
root which gives rise not only to a §H, but also to a $H, and so H-6H
is not necessarily zero.

(t7f) ENTROPY WAVES

Similarly to ordinary hydrodynamics, the root ¢, = 0 corresponds
to an entropy wave proceeding with the speed v,, across which the
entropy changes. However, the peculiar property of magnetohydro-
dynamics is also revealed even in this case. Let us suppose first that
H, is not equal to zero; then the equations possess only the solutions

Sv=8H=0 (4.3.24a)
e Op
and
op =0. (4.3.24¢)

Since entropy and density undergo jumps such that the pressure
does not change and particles do not cross the wave front, the entropy
disturbance may be called a contact surface. However, in striking
contrast to the situation in gas dynamics, a contact surface in
magnetohydrodynamics does not permit a discontinuity in the
tangential component of the velocity if H, is not equal to zero. On
the other hand, if H, is equal to zero we obtain a different result.
This case will be treated separately in Section (¢v).
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(w) H,=0

In this case both ¢, and b, become zero and we obtain a triple root
¢, = 0, whilst ¢, reduces to a* = ya? + b2 For the entropy disturbance
¢, = 0 and the solutions to equations (4.3.1) to (4.3.4) are given as
follows:

SH = K (4.3.252)
Sv = et (4.3.25b)
85 = ¢ (4.3.250)
and
__Y(op B g
5= (@ e+ (E) H Ke) (4.3.25d)

where both € and ¢, are parameters characterising smallness of the
jumps, t is a unit vector perpendicular to n, and K is an arbitrary
vector perpendicular to n. The expressions (4.3.25) indicate that the
transverse components of the flow velocity and the magnetic field
may undergo an arbitrary jump, and that the jumps of density and
pressure are subject to the one condition

dp*=0. (4.3.25¢€)

Hence the contact surface of this type is closely analogous to the
hydrodynamic one. As was noted already at the end of Section (z),
for the root ¢, = ¢, the limiting process H,— 0 in equations (4.3.19)
does not necessarily lead to equations (4.3.25); however, for the root
¢, = a*, the solution may be obtained by this limiting process.

(’U) Htr =0

If the transverse components of magnetic field H, and H, are zero,
the roots c,, reduce to @ and b ( = b,). The root b is a double root, that
is to say as H, tends to zero in equations (4.3.1) and (4.3.9) to (4.3.13),
the first four equations, corresponding to magnetoacoustic waves,
split into two parts. One of these parts leads to the sound wave with
speed a and the other to the Alfvén wave with the speed b associated
with the jumps of 8H, and 8v,; equations (4.3.12) and (4.3.13) give
the Alfvén wave associated with the jumps 8H, and 8v,.

4.4. WAVE FrRONT Diagram

In this section we assume that the undisturbed state is a constant
state and discuss patterns of wave fronts for solutions linearised
around the constant state.
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() THE SURFACES OF NORMAL VELOCITY

First of all we investigate the variations of the normal speed ¢, in
various directions.
Equations (4.3.15) and (4.3.16) for ¢, and ¢, can be rewritten as

¢,/b = [3{(1 +8) + V(1 +5)2 — 45 cos? g2 (4.4.1)

and

co/b = [H{(1+8) —V(1 +5)%— 4s cos? §}]1/2 (4.4.2)

in which s denotes the square of the ratio of the sound speed to the
Alfvén speed, i.e., s = a?/b? and 0 is the angle between the normal to

(c)

(b)

Fi1e. 4.1. Illustration of the surfaces of normal speeds for (a)s = 0-5,
(b)s=1,and (c)s =2 (48).

the wave front and the magnetic field. The transverse wave speed
b, can also be expressed in terms of 6, through the equation

b,/b =|cos@|. (4.4.3)

Since the undisturbed state is assumed to be a constant state, a and
b are constant and c,/b and c,/b are functions of 6 with a parameter s.

The polar diagrams of ¢,/b, c,/b, and b,/b for three values of
s: %, 1, and 2 are shown in Fig. 4.1. By rotating those curves around
the axis taken in the direction of the magnetic field, we obtain the
surfaces in the three-dimensional space which will be referred to as
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the surfaces of normal velocity. The curves corresponding to s equal
to 0-5 and 2 are typical for the parameter ranges s<0-5 and s> 2,
respectively. In Fig. 4.1, the values of ¢,/b, c,/b, and b,,/b are plotted
against the polar angle 6; namely, the distances from the origin to
each point on the curves denoted by f, s, and ¢ are equal to c,/b, c//b,
and b, /b, respectively. The curve ¢ representing equation (4.4.3) is
composed of two circles of unit radius. By virtue of equations
(4.3.21) the curve f corresponding to the fast wave is always outside
the curve ¢, whilst the curve s corresponding to the slow wave is
always inside the curve ¢. All the curves are symmetric about the
axis taken so as to coincide with the direction of the vector H.

The diagrams for s = 0-75 and s = 1-5 are plotted in reference (48).

(¢2) THE FRIEDRICHS DIAGRAMS (54, §5)

In the following discussion we assume that the unperturbed flow
velocity is zero, consequently the normal speed ¢, is equal to the
normal component of velocity of the wave front itself. For plane

Y

N

)
/<9 —H

Xo

F1c. 4.2. The propagation of a plane wave.

propagation the patterns of the wave fronts follow immediately
from Fig. 4.1. In Fig. 4.2 it is shown how an initial disturbance on a
plane X, proceeds in the direction of its normal specified by 6, the
angle between the normal and the xz-axis oriented along the vector
H. After a time t, it moves to a plane X, travelling a distance
c,(0)t, where c,(0) takes the value c/(6), c,(6), or b,(f) according as
the wave is the fast, the slow, or the transverse wave. If the plane
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X, is defined by the relation
xcosf+ysind = R,
then the equation of the plane X becomes
xcosf+ysinf = Ry+c,(0)¢

in which the + or — sign corresponds to the wave starting at ¢ = 0
and directed either away from or towards the origin of coordinates,
respectively.

Let us next consider an initial disturbance on a cylinder of radius
R, obtained by taking the envelope of the plane X (8) with respect
to 6. Then the wave front at a time ¢ emerging from the cylinder is
given as an envelope of the plane X(f) and can consequently be
expressed by the set of equations

xcosf+ysind = Ry +c,(0)t

. _ dc,(0)
—zsinf+ycosf = i( 20 )t

or, solving the above equations with respect to « and y, we obtain

and

x = Rycosf + (cn cosf — % sin 0) ¢ (4.4.4a)
and
y = Rysinf + (cn sin 6 + %ce’i cos 0) ¢ (4.4.4b)

in which the + sign should be so chosen that the envelope can be
formed.

If the initial disturbance is on a sphere of radius R, whose centre
is at the origin, the wave front can be obtained by rotating about the
z-axis the curve in the (z,y)-plane given by the above equations
(4.4.4a,b). Denoting the coordinate of a point on the wave front by
Z, 9, and Z we have

i=x (4.4.5a)

g =ycos¢ (4.4.5b)
and

Z=ysin¢ (4.4.5¢)

in which x and y are given by equations (4.4.4a,b) and ¢ is the angle
of rotation. In the limit as Ry— 0, this leads to the pattern of a wave
front diverging from a point source. As can be seen from equations
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(4.4.4), in this case the shape of the wave front preserves similarity
with the development of time. It will be shown explicitly in the
following discussion how the patterns of wave fronts of the fast, the
slow, and the transverse wave may be constructed graphically as well
as analytically (cf. Section 1.7). These were first obtained by
Friedrichs (54, 55) and are called Friedrichs diagrams.

(a) The Transverse Wave

Since c,, is equal to b,, equations (4.4.4) reduce to

x = Rycosf + bt (4.4.6a)
and
y = Rysind (4.4.6b)
s° gt

| I |
HY4 [ pH? (¢

I4—11#Lp(t to)—te— Z%(t to)—

Fic. 4.3. Construction of the wave front (48).

which represent two circles in the (z,y)-plane of radius R,, moving
with the speed b in the positive and negative directions of the xz-axis
(cf. Fig. 4.3); consequently, the wave front becomes two spheres.
In the limit of a point source, these shrink to

two points moving with the Alfvén velocity v
along a magnetic line of force. As was
explained in Section 1.7 an alternative
graphical construction which may be simpler
in this case is the following (see Fig. 4.4).
Draw a straight line passing through the o
origin and making an angle § with the z-axis.
Construct the normal to this line at the point
of intersection of this line with the normal
speed curve of the transverse wave. For any Fic. 44, The con
Q this nQrmal passes through the pomt‘of struction of the point
intersection of the normal speed curve with transverse disturbance.

8
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the z-axis since in this case the normal speed curve is a circle. In
short, the Alfvén wave propagates one dimensionally without radial
attenuation (57).

(b) The Slow Wave

Since in this case the analytical method involves cumbersome
numerical computation, we begin with an illustration of the graphical

‘y\f
ANS Sy 4
0
-~ | .
——-.2‘=1—>: /
f‘
Q
PIN
(a) 's 0
Q -4
by z =tan"'(1/2)
f\
(b)

(%}

AN
\‘z_,*

(c)

Fic. 4.5. The Friedrichs diagrams for (a) s = 0-5, (b) s = 1, and (c) s = 2.
The actual wave fronts are obtained by rotation around the vector H (48, §5).

=

w

construction for a point source. As was explained for the transverse
wave, draw a straight line passing through the origin and making an
angle § with the z-axis. Then construct the normal to the line at
its intersection with the normal speed curve of the slow wave. (The
x-axis is, as usual, oriented along the vector H.) The construction
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then shows that as the parameter § changes the normals envelop a
cusp unless s = 1. The cusps thus constructed are given in Figs. 4.5a
and 4.5¢, for s = 0-5 and s = 2 which are typical for the range s <1
and s > 1, respectively. For s = 1 we have a different situation which
is illustrated in Fig. 4.5b. Since the wave front diverging from a

Fic. 4.6. The initial propagation of a slow wave from a sphere shown by
Bazer and Fleischman (48).

point source preserves its similarity in shape while propagating, the
essential pattern of the slow wave front is given by the two cusps
proceeding in opposite directions and parallel to the magnetic field.
An alternative method of approach is the analytical one based on
equations (4.4.4) which now take the form

x . cosf ¢, ssin2f
and
Y _ gn_f) . (K cos2 6
b= R, 5 +sinf [b 5T ¢ (4.4.7b)
where C is
C = [(1+s)2—4scos?6]/2. (4.4.8)

By virtue of similarity, the point source disturbance can be obtained
numerically from the above equations by setting R, = 0 and £ = 1.
For a wave diverging from a sphere of finite radius however the
similarity does not hold and in the initial stage of propagation the
wave front has a shape differing considerably from that of a point
source; Fig. 4.6 illustrates how, for small values of time, the slow
wave front emerges from a sphere (48).

(c) The Fast Wave

The graphical construction for the fast wave is rather easy since the
normal velocity surface is a single closed surface and leads to an
envelope which is also a single closed surface unless s = 1. The surface
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is given by the curves denoted by f in Figs. 4.5. Incidentally,
equations (4.4.4) become

z (R, ¢, ssin%f

b= (?) cosf + 0030[3— (c,/b)C’] t (4.4.8a)
and

Y _ (Ro\ . - a[e scos2l

b= (b)SIHOiSlne[b+_—(c,/b)C t. (4.4.8b)

The results thus obtained imply that the fast wave behaves in the
same way as the ordinary sound wave except for the variation of
speed with direction, whilst the slow and the transverse waves
propagate in most distinctive ways. The former exhibits a remarkable
anistropy and the latter is guided by the magnetic lines of force and
propagates without radial attenuation. Equations (4.4.7) and (4.4.8)
may be exhibited in a form in which 6 does not appear.}

(t%9t) THE CHARACTERISTIC RAYS (48, 86)

An alternative method of obtaining the wave fronts is to make use
of the notion of characteristic rays which was explained in Chapter 1.
Equations (4.3.17) are written in the following form:

p+v-Votc, |Vol =0 (4.4.9a)
* H) Ve =
o+ (vi A/ o H) V=0 (4.4.9Db)
and
o+v-Vo =0 (4.4.9¢)

where ¢, takes the value ¢, or c,.

These equations are of the so-called Hamilton-Jacobi type; the
corresponding Hamiltonians J# are given by equation (1.7.9). For
equation (4.4.9a) we have

Hs=v-Pptc,p, (4.4.10a)
for equation (4.4.9b) _
H = (viA/ﬁ—/; H)-p (4.4.10b)
and for equation (4.4.9¢c)
Hy=v-p (4.4.10c)

where we denote Vo by p and | Vol by p.
t Lynn, Y. M., Phys. Fluids, 5 (1962), 626—627.
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The characteristic rays of these equations may be identified as
particle trajectories governed by the respective Hamiltonians and
P corresponds to the momentum, namely, for fast rays

dy _0#; _b%s(H,/H?)
E__ig_vicfn+—c/'0’~—_(H_H"n) (4.4.11a)
%1;=_%9?=_(p-V)v—px(va)-T-pVC, (4.4.11b)

and for slow rays
2
dx vic 2s(l%l,,/H_)

a=re snth o,C (H—H,n) (4.4.12a)
ap -
—d?=—(p~V)v—px(va)+chs (4.4.12b)

where the upper and the lower signs of the + or T signs correspond
to the upper and the lower signs of + in equation (4.4.10a) and C
is given by equation (4.4.8).

For Alfvén rays:

das

- viA/r:;sgn(H~p)H (4.4.13a)
P __ .. Jﬂ .

P =0V [vx J L sen i) H|

—px{Vx [ViA/gpsgn(H-p)H]; (4.4.13b)

where the + signs correspond to those in equation (4.4.10b) and
sgn (H- p) is the sign of H-p. These equations demonstrate that even
if v = 0, the rays are not perpendicular to the wave front, that is to
say, the medium is a highly anisotropic one such as is to be found in
crystal optics (Section 1.8 (57)). Since v, p, and H are not known
unless the solution to the original equations is given, it is impossible,
in general, to integrate the ordinary differential equations (4.4.11),
(4.4.12), and (4.4.13). However, as was explained, if waves propagate
into a constant state, they assume the wave fronts appropriate to the
constant state values so far as the smooth solutions are concerned.
If v=0 and p and H are constant, it follows immediately from
equations (4.4.11b) and (4.4.12b) that p is constant in each ray system
and we have the solutions:
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for Alfvén rays,

— %, = +A/4ﬂpsgn H(-t,), (4.4.14)
for fast rays,
This (H,,/H?)
¥—%x,={tc,n,Fb%s cC' (H-H, n,); (t—t,), (4.4.15)
!
for slow rays,
2
X—%, = { te,ngt b%gﬂ/fﬂ (H-H,, no)} (t—t,) (4.4.16)
S
where we denote the unit normal at the point &, of the initial surface
of disturbance at ¢t = t, by n, and H, = H-n,. Since p is constant
we have n = n; for all time. Equation (4.4.14) implies that the
particle moves with constant velocity b along the magnetic line of
force. Therefore the normal velocity of the wave front is obtained by
the projection of the ray velocity in the direction of the normal n.
Figures 4.2 and 4.3 follow directly from equation (4.4.14). Equations
(4.4.15) and (4.4.16) show also that n,- (¥ —x,) is equal to +c,(t—1,)
and +cg(t—t,), respectively.

(fv) SPATIAL DISCONTINUITIES IN STEADY
FLOWS

By analogy with Mach waves in gas dynamic steady flows we
may expect that the original equations, even in the time-independent
case, admit real characteristics which imply the existence of spatial
discontinuities. The method of obtaining these real characteristics
has already been outlined at the end of Section 1.9(i). Let us now
consider a steady flow linearised around a constant state with
velocity of flow v = v. If, in the Friedrichs diagrams, it is possible
to draw a real tangent from the point r = v, to the wave front, then
its envelope forms the surface of an infinitesimal spatial discontinuity.
The tangents thus obtained for two-dimensional flow which are
illustrated in Figs. 4.7 were obtained by Sears (79) and Resler and
McCune (76).

For fast waves the situation closely parallels that in gas dynamics
and there exist real characteristics if and only if the point r = v, is
outside the fast wave front. However, for slow waves, we find
properties that are peculiar to magnetohydrodynamics since real
tangents exist not only for v, located outside the slow wave fronts



4.4, WAVE FRONT DIAGRAM 187

but also for v, inside these wave fronts and, moreover, some of the
tangents are inclined towards v,. For example, in Fig. 4.7a v, is
outside the fast wave front and we thus have four characteristics,
two associated with the fast wave front and the remaining two with

W
¥

%

%%
Fia. 4.7. The steady spatial discontinuities in a general configuration of
two-dimensional flow and magnetic field illustrated by Sears (79).

the slow wave. In Fig. 4.7b v, is inside the fast wave front but
outside the slow wave front and consequently two fast real character-
istics become imaginary and we have two slow characteristics
diverging in the usual sense towards the downstream (—wv;). In
Fig. 4.7¢ v, is inside the cusp and there exist two tangents drawn to
the slow wave fronts but they are directed upstream towards v,.
In Fig. 4.7d v, is inside the fast wave fronts but outside the slow
wave fronts so that there are two characteristics, one of which is
inclined towards v,.

The analysis for the general configuration of flow and magnetic
field including the elliptic-hyperbolic case is complicated even in
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the linearised case (58, 76, 79). A simple case is given by the condition
that the flow and magnetic field are everywhere parallel. It is easy
to see that a steady solution Hoc py exists since by this choice equation
(4.2.4) is automatically satisfied, whilst equations (4.2.5) and (4.1.2)
become equivalent, so that the hydromagnetic equations can be

E )
(a) (b)
5 5 © ()]

Fic. 4.8. The steady spatial discontinuities for the alined case as given by
Sears (79).

reduced to hydrodynamic-like equations for v, p, and S (87). In this
case the characteristics in Figs. 4.7 reduce to those of Figs. 4.8 (79).
In Figs. 4.8a and 4.8¢ we find two symmetric characteristics, one
associated with the fast wave [in (a)] and the other with the forward
facing slow wave [in (c¢)]. The conspicuous property that the slow
wave is forward facing was shown by Kogan (64) and by Resler and
McCune (76). In Figs. 4.8b and 4.8d no tangent exists and the other
families of characteristics degenerate into the horizontal axis (the
streamline). An analytical discussion of these spatial discontinuities
will be given in Chapter 8.
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4.5. PrRoPAGATION OF WEAK HYDROMAGNETIC
DISCONTINUITIES

The ideas developed in Section 3.8 may be applied directly to
magnetohydrodynamics to determine the propagation of weak
hydromagnetic discontinuities or weak shocks along rays.

We shall follow the method of Bazer and Fleischman (48) but will
only derive results for the propagation of the Alfvén wave discon-
tinuity and will refer to their fundamental paper for the results for
the fast and slow modes and for a discussion of the resolution of an
initial discontinuity.

The fundamental equations, the Lundquist equations, are from
Section 4.1 for the case of isentropic flow

%%I—Vx[va]=0 (4.5.1)

%-l-v'Vp-l-pV'v =0 (4.5.2)

W Vrilvp— P [VxH]xH=0 (4.5.3)

ot P 4mp

S = constant (4.5.4)
and

V-H=0. (4.5.5)

Let us now locate the origin of our coordinate axes on the discon-
tinuity surface #(t) and locally direct the z-axis along n the normal
to #(t), denoting the a-components of vectors by the suffix ».

Then, from equations (4.3.1) to (4.3.4) and Appendix E, we see
that on either side of & (¢) small disturbances will satisfy the equation

&, 8V =0, (4.5.6)
where [ a T
=8
5P
dv,
v,
8V = s (4.5.7)
dmp
v,
il
47mp 8

2
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and

[ Fc, a 0 0 (U
a Fe, b, 0 b,
0 0 Fe, -0 0 0

Ay = Lo (4.5.8)

0 b, —b, Fc¢, O 0
0 0 0 0 Fc, —b,

| O b, 0 0o -b, Fec,

with ¥¢, =v,—A, (¢,>0),and b, , = Ju/4mp H,

Ys2*

Taking for our basic solution the steady-state condition we differ-
ence equations (4.5.6) across &(t) to obtain the jump equations
[cf. equation (3.8.15)]

e, a 0 0 0 0 % (Ap)

a Fc, O b, 0 b, Av,

0 Fc¢, b, O 0 Av,

_ M =0
0 by — bn +C, 0 0 Zﬂ'—P AHy
0 0 0 0 Fc, -—b, Av,
- [ v
] 0 b, 0 0 -b, Fe, 1L FPAHZ ]
(4.5.9)

while equation (4.5.5) gives AH, = 0.

To proceed further we must now obtain a system of equations
involving the time derivative of the variational jump quantities. One
method of deriving these equations would be to write the conserva-
tion equations (4.5.1) to (4.5.4) in the matrix form corresponding to
equation (3.8.1) and to proceed directly with the arguments of
Section 3.8. However, an easier method in this case is to follow the
work of Bazer and Fleischman and to use equations (4.5.1) to (4.5.4)
directly, and so to avoid much algebraic manipulation. Let us start
then with equation (4.5.1) from which we immediately obtain the
linearised variational equation

(6H),—Vx[fvx H|—-Vx[vxéH]=0 (4.5.10)
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which applies on either side of &(t). Following the derivation of
equation (3.8.7) let Z = Z(x,t) be a scalar or vector quantity with
components z; along unit vectors e;, and denote its value on the
discontinuity surface & (t) by

7 = Z(x,8(x)), (4.5.11)
where, as in Section 3.8, &#(t) is defined by ¢ =8(x)—t = 0. Denoting

by an asterisk (#) a scalar or vector multiplication such that V «Z is
defined, we have that

VxZ = e, -)(-e,gzj1

which, as in equation (3.8.7), may be written
02; 02;
VeZ=ee {3 '+pi7t'}yu>

where, as before, p, = 08/0z".
This may be interpreted as the following general identity :

V+Z =(V+2Z)+(p*Z). (4.5.12)
Applying this result to equation (4.5.10) on & (t) we find that
(8H),—V x [89 x H|—V x [# x §H]
+{px[¥xH,+px[#x8H]}=0. (4.5.13)
Since the steady-state solution was taken as the basic solution and is
continuous across #(t), we have H=H, ¥ =v, H =0, and v,=0
when equation (4.5.13) takes the form
(8H),—V x [8% x H] -V x [v x 8H]
+px[(89),x H|+p x [vx (8H),] = 0. (4.5.14)
Expanding the last two triple vector products noting that by the
identity (4.5.12), p-(8H), = V-(8H)—V-(6H) and employing the
relations p-H = pH, and p-(6¥), = pn-(6¥), we find that
plp~H(1—p-v) (8H),—n-(89),+ H,(57)]
=Vx[0xH]+Vx[vx8H]+[V-(6H)-V-(8H)]v. (4.5.15)

Since F¢, =v,—A where v, = p~(p-v) and A = p~! we see that
pY1—p-v) = +¢,. Differencing equation (4.5.15) across &(t) and
using the variational divergence condition V- (8H) = 0 which is true
on either side of #(t) and omitting the bar, we finally obtain

Tc,(AH),+n-(Av),H— H,(Av), = AR, (4.5.16)
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where
R, =-Vx[(Av)x H|-V x[vx (AH)]+(V-(AH))v. (4.5.17)
Similar arguments applied to equations (4.5.2) and (4.5.3) give

¢ (Av) + 1 [ (Ap), +-_- H (AH)] “P H,(AH), = AR,

(4.5.18)
where
R, = p~'V(a®Ap) + [(AH) x(Vx H)+ Hx (V x (AH))]
+Av-Vy+v-V(Ay) — (Bp )[a2V t i £ Hx(VxH)]
(4.5.19)
and
T (Ap)+ p(AV),-n = AR, (4.5.20)
where
R; = V- [v(Ap) + p(Av)], (4.5.21)

respectively. When written in matrix form, equations (4.5.16),
(4.5.18), and (4.5.20) become

o(AV), = AR (4.5.22)
with
a
ol

(1/p) R,

(1/p)R
R= - . (4.5.23)

a
4mp B

(1/p) Ry,
I
i ~/ dmp e |

Since the coefficient matrix & is symmetric it follows directly
from the general theory of Section 3.8 that the orthogonality
condition is

Y

(APYR =0, (4.5.24)
or

(;’—:-T) R,-(AH)+R,- (Av) + (a;) Ry(Ap) = 0. (4.5.25)
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In terms of R;, R,, and R, this may be written:

V. {ﬁ (AH) x (Av x H) +a%(Ap) (Av)}
+{ﬁ(AH)2+S(%P)2} Vv
+iv- {ﬁ V(AH)? + pV(Av)2 + “;2 V(Ap)z}

+p[(Av-V) v]-(Av)—Z’:—T[(AH-V)v]-(AH) =0. (4.5.26)
From equations (4.3.22b, ¢, f) we immediately obtain the results

f; (AH)2 + p(Av)2 = 2u(AH)? = 2p(Av)? (4.5.27)
:—ﬂ (AH) x (Av x H) = +sgn (H,) /7“% p(Av)2H  (4.5.28)
and

p[(Av~V)v]~(Av)—-4% [(AH-V)v]-(AH) =0  (4.5.29)
when the orthogonality relation (4.5.26) becomes

a0 v- [vsgn (i), [ 2 |

+ [v +sgn (Hn)A/g; H] V[p(Vv)?]

—3[p(Av)?]v-Viogp = 0. (4.5.30)

To simplify this further we first note that the condition that equations
(4.5.9) should be consistent is that the associated determinant, the
characteristic determinant, should vanish. This is simply the
condition that

H= (cn2 - bn2) [(cn2 - a2) (cn2 - bn2) - cn2(b2 - bnz)] =0. (4531)

From equation (4.3.20) we again have equations (4.4.9a,b), i.e., the
Hamiltonians (4.4.10a,b). The ray velocity s is given by equation
(4.4.13a) as

s = v +sgn(H,) ﬁ H. (4.5.32)
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In terms of these rays equation (4.5.30) now takes the form
p(Av)2V-s+5-V[p(Av)?]— }[p(Av)?]v-Viogp = 0. (4.5.33)
This is just an ordinary linear differential equation in terms of the
quantity p(Av)? and, by Section 3.8, may be written
% [p(Av)2]+{V-s—3v-Vlog p}[p(Av)?] = 0. (4.5.34)

In terms of the expansion ratio E(t) introduced in Section 3.8 this
may be written

t
E@) M) [p(AV)?)acxy = E(tg) Ato) [p(AV) ]err) expﬁ (3v-Vliogp)dt.

' (4.5.35)

This equation determines the variation of the discontinuity strength
in the Alfvén mode as it is propagated along a ray. The result applies
neither to conical propagation nor when the initial manifold is

singular. A discussion of conical refraction in optics and hydro-
magnetics has been given by Ludwig.t

tLudwig, D., Communs. Pure & Appl. Math. 14 (1961), 131-134.



SIMPLE WAVES

5.1. PROPERTIES OF MAGNETIC LINES OF
FoRrcE

BEFORE EXPLAINING simple waves we first discuss some properties
of magnetic lines of force which follow directly from the equations
of motion. Let us consider the two independent families of space
surfaces,

o(x,t) = constant and J(x,t) = constant

which are transformed continuously through the equations

(§+V'V)§0=0 (5.1.1a)
and
((%_H,.V),/,:o (5.1.1b)

as the parameter ¢ varies. [In accordance with equation (4.3.17d)
these are, of course, characteristic surfaces.] If we initially specify
two arbitrary surfaces by setting

»1(%,0) = ¢y and ®a(%,0) = c,,

then each element of these surfaces moves with the velocity v(«,t)
and at a time ¢ they are mapped into the new surfaces

p1(%,t) = constant and @o(x,t) = constant .

However, along the particle path dx/dt = v, ¢, and ¢, are constant,
namely, they are transformed into the surfaces with the same
constants p,(x,t) = ¢, and @,(%,t) = c,, respectively. Thus, through
the transformation (5.1.1) the measure Ap = |c,—c¢,| is preserved.
Similarly, from another family of surfaces we specify the two surfaces
n(%,0) = ¢; and ,(x,0) = cy; then the tube formed by the inter-
section of these four surfaces also moves with the velocity v(x,t) and

195
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the measure Ap Ay is preserved. (We note that Ap and Ay are not
necessarily equal to geometrical distances between the two surfaces.)
That is, the tube moving with the fluid velocity carries the invariant
measure Agp Ai.

We now define the vector

H(x,
H(x,t)=Vp x Vi)

It can easily be proved that V- H = 0. Then, using equations (5.1.1),
we obtain the equation for H:

oH
ot

Consequently the vector F, defined by
F=H-HA,

t) as follows:

=Vx[vxH].

also satisfies the equation
oF
ot
Therefore, if ¢ and i are specified initially such that
Vo x Vi = H(x,0),
we have for all time that
Vo x Vi = H(x,t) (5.1.2)

provided equation (4.2.4) has the unique solution H = 0 subject to
the initial condition H(x,0) = 0. Any magnetic line of force may be
represented as the intersection of two surfaces ¢ = constant and
¢ = constant. The expression (5.1.2) for the magnetic field vector H
allows a representation of the vector potential A in terms of ¢ and ¢
which is introduced as usual through the equation

VxA=H.

It is quite obvious that the above equation is satisfied by the
following expression for A:

=Vx[vxF].

A=4¢Vy. (5.1.3)

Then, by virtue of the equation (5.1.3) and Stokes’ theorem, we have
H-df=¢ A-ds= Vif-d 5.1.4

[par- ads=§ svp-as (5.1.4)

= A¢ Ay = constant .
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Here df is the vector surface element on a cross section & of the tube
surrounded by the surfaces ¢,(%,t) = c,, da(¥,t) = 5, Py(#,t) = ¢y, and
(%, t) = ¢y, where € is the boundary of the surface & and ds is the
line element vector of €. Therefore we may conclude that the
magnetic flux passing through an arbitrary domain moving with
the fluid remains constant. This important property is usually
derived as the result of the direct integration of equation (4.2.4)

4 z
é- ’ PI
Pol dr
dl'o g P
Po
o
0 Y

z

Fi1c. 5.1. The displacement of a fluid element.

[using the result of equation (3.1.5)] and is often expressed by the
statement that the magnetic lines of force are frozen in the fluid.
Let us now mention a relation which follows directly from equation
(5.1.4). Suppose that the tube is sufficiently narrow and, at a
time ¢, let us consider the two neighbouring points Fy(r,) and
Py(r,+dr,) on a magnetic line of force (see Fig. 5.1). Then the fluid
elements at Fy and Py move to the neighbouring two points P(r) and
P'(r +dr), respectively, at time ¢. Denoting r—r, by §, we obviously
have § = E(r,,¢,) and similarly we also have

(r+dr)—(ro+dry) =€'(ry+drg,ty) = E(rg,ty) + (dry- Vo) §.
Hence we obtain the relation
dr =dry+(dry-V,)E.
On the other hand, equation (5.1.4) leads directly to the equation
H-df = H,-df,
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where H; and df, refer to the point Fyand H and df to the point P;
and from the mass conservation law it follows immediately that

pdf-dr = pydfy-dry.

Hence, using the frozen-in condition, we finally obtain

-}—I=ﬂ+(&)'vog. (5.1.5)
P Po Po

This relation implies that in an incompressible
fluid the magnetic field is increased by motions
which extend the magnetic lines of force
/7 so that H,-V,§ is positive, and conversely

(see Fig. 5.2). Another result which follows
directly from equation (5.1.5) is that along each
particle path Hjp remains constant for the
motion satisfying the condition H,-V,§ = 0;
for example, this is realised when the magnetic
field is unidirectional and the motion takes
place in a direction normal to the magnetic
field in such a way that the velocity v does
~ Fre. 5.2. The not vary in the direction of the magnetic field.
g;?;gagslgg;ﬁrgzﬁ: We now investigate the cases of incompressible
ing. flow and flow purely perpendicular to the
magnetic field.

(¢) INCOMPRESSIBLE FLOW

In this case V-v = 0 and we assume that p is constant. Then, from
equation (4.2.6), we may consider the special solution

g ©
(&"‘V V)v_Z’[T_P(H V)H, (5.1.63/)
and
Vp*=V(p+puH?/87) = 0. (5.1.6Db)
Equation (4.2.4) takes the form
(§+v-V)H=(H-V)v. (5.1.7)

The pressure p is given by equation (5.1.6b) when H is determined;
equations (5.1.6a) and (5.1.7) constitute a system of equations for
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the unknowns v and H, the characteristic manifolds ¢ and x of which
are given by the equations

9 Ly [ B Hove -
O vV x— - H-Vx =0 (5.1.8b)
at XTN gp 0 VXT T o

It is clear that these equations are the vectorial forms of equation
(4.83.17¢). We may construct the characteristic curvilinear coordinate
net ¢ = constant, x = constant, ¢ = constant, and i = constant,
where ¢ and ¢ are given by equations (5.1.1) and (5.1.2). Using the
relations H-Vp = 0 and H- Vi = 0 which result from equation (5.1.2),
we can re-write equations (5.1.6a) and (5.1.7) in terms of these new
variables as follows:

(H-Vx)%(v—J;%H)+(H~V¢)%(v+&H) =0,

wsofo- &) wsn o [ -

and

Consequently we have

%("h/gpﬂ) -0 (5.1.9a)
%(”-A/‘,%H) —o. (5.1.9b)

Hence we obtain the relations

and

v+ ./4—ZPH= K, (x.9.¥) (5.1.10a)
and

_ |/ * H-

v 4ﬂpH K_(¢,90,9), (5.1.10b)

where K, and K_ are independent of ¢ and y, respectively, and may
be considered as the Riemann invariants in three-dimensional space.
As a result, three-dimensional simple waves are obtained if K, or K_
is a constant vector. For example, if K, is a constant vector, then
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from the equation
0
(at+K v) $=

¢ may be written
¢ =d(n-x—|K,|[t) (5.1.11)

where n stands for K /| K |. Inserting equation (5.1.10a) into equa-
tion (5.1.6a) leads to the equation

(3+K V)v_()

ot
or
0 +K, - V) H=
ot
Therefore we have the simple wave solutions
v=v(x—|K,|ty,z2) (5.1.12a)
and
H=Hx-|K_|t,y,2) (5.1.12b)

where the positive direction of the xz-axis is directed along the vector
n. If there exists a constant external magnetic field H,, then K
may be set equal to \//.L/477‘p H,, consequently |K_ | becomes the
Alfvén speed b, and H is given by the expressions

H=H,+h, h = h(x—>b,t,y,2), (5.1.13)

%
v+ A/ anp h=0.
These are just the usual expressions for the Alfvén wave.

Although these can be found easily from equations (5.1.6a) and
(5.1.7) by inspection (46), it nevertheless seems interesting to note
that they belong to a three-dimensional simple wave. Moreover,
the characteristic manifolds are parallel planes, hence they never
intersect one another. This property implies that the simple waves
do not develop into shocks. This of course can be seen directly from
equations (5.1.12) and (5.1.13) which demonstrate that the Alfvén
wave propagates without distortion of wave shape. It also seems
worth while to note the property of the surfaces y or ¢ similar to
that of ¢ and ¢; namely, by comparison of equations (5.1.8a) or
(5.1.8b) with equation (5.1.1) it may be seen that ¢ and y are con-
stant along the characteristic rays dx/dt = K, and dx/dt = K_ of

and



5.1. PROPERTIES OF MAGNETIC LINES OF FORCE 201

equations (5.1.8a) and (5.1.8b), respectively, and that the vectors
G, = V¢, x V¢, and G_ = Vy, x Vx, satisfy the equations

?—g—i:Vx[KixGi] and V-G, =0. (5.1.14)
Where ¢, and ¢, belong to the family of surfaces ¢ = constant and
x; and x, to the family of surfaces ¥ = constant. In other words, the
flux G,-df, is conserved along the Alfvén characteristic rays. In
the simple wave region characterised by K, = constant, G, may be
identified with v.

(it) THE PURELY TRANSVERSE CASE

Let us suppose that the magnetic field has only a z-component,
that the velocity has only x- and y-components, and that all variables
are functions of z, y, and . It is easy to verify that these constraints
are compatible; if they are assumed to be true initially they
perpetuate. From equation (5.1.5) we have

H
P

is constant along each particle path where H is the z-component of
the magnetic field [i.e., (0/dt+v-V)k = 0]. Hence, if « is initially
constant over a domain, then over the space-time domain covered by
the particle paths issuing out of the initial domain, H/p is constant
and equal to x. H is then eliminated completely and the system then
reduces to the ordinary hydrodynamical system with p replaced by

K

* = M2 e
p*(p,8)=p(p, 8) + 45— x*p?.

This region may be called a singly stmple wave region. On the other
hand, over an isentropic domain § is discarded and H/p plays the

role of entropy. This system is equivalent to the hydrodynamic
system with the pressure replaced by

p(P)+$TP2K2~

Another reducible case which has a more global interpretation is
realised if « is given in terms of a functional of S, say, « = «(S),
namely, the two families of surfaces « = constant and S = constant
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are the same. If the initial state is such that x = «(8), then by virtue

of the equation
0 0
(8t+v V)S (3t+v V) 0,

this functional relation perpetuates. In this case H is given in terms
of § and the system again reduces to the hydrodynamical system
with the modified pressure

* =pa4 2 2
P*(p, S)=p + g «*(S)p*.

Especially in one-dimensional space propagation where all
variables are functions of z and ¢ only, the initial equi-entropy
surfaces S = constant must be the planes x = constant, and the
same is true for equi-« surfaces. Hence we have « = «(S). In
other words, one-dimensional propagation with H perpendicular to
v can be reduced to that of a non-isentropic hydrodynamical system.

Generally speaking, in the pure transverse configuration there
exist not only the mechanical equations so far obtained but also the
formal thermodynamical relations closely analogous to those in the
ordinary hydrodynamical case (58).

5.2. StMmpLE WAVES IN ONE-DIMENSIONAL
PropraGcaTION (47,55,73)

Let us assume that all quantities are functions of  and ¢ only.
Then, first of all, it follows from equation (4.1.2) that H,, is constant.
According to equation (2.2.15) the system of equations governing
simple waves takes the following form similar to that of the system of
equations (4.3.1) to (4.3.4):

(Fep)dplp+dv, =0 (5.2.1a)
2
(Fe,)pdv+ae dp+aSe as
(u/4m)(H-dH) e, — (u/4m) H,dH = 0 (5.2.1b)
(+cn)dH—szv+Hdvx =0 (5.2.1¢c)
and
(Fe,)dS =0, (5.2.1d)

in which we denote the unit vector along the z-axes by e, and where
dp and dv,, etc., stand for infinitesimal changes in p and v,, ete., with
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respect to some parameter characterising the simple wave. The
quantity c,, is of course one of the roots ¢, c,, b,, and 0. Corresponding
to these values of the roots we name the appropriate simple waves as
fast, slow, and transverse simple waves, and entropy waves, respectively.
In view of equations (4.3.17) the Fc¢, in these equations correspond
to the C-characteristic equations dx/dt = v, + ¢, respectively.

(!) MAGNETOACOUSTIC SIMPLE WAVES
(FAST AND SLOW SIMPLE WAVES)

We assume that c, is equal to ¢, or ¢, and differs from b, and zero.
From equation (5.2.1d) we have immediately that S = constant.
Moreover, from the y- and z-components of equations (5.2.1b) and
(5.2.1c) we get

dv,

dv, dH, H,

dv, dH, H,’

This relation implies that the ratio H,/H, is constant throughout the
simple wave region; in other words, the flow and the magnetic field
do not rotate across a simple wave. Hence we may again refer to a
coordinate system such that v, and H, are zero throughout the

simple wave region. Then the system of equations (5.2.1) reduces to

Fe,dp+pdv, =0 (5.2.2)

atdpF e, pdv,+ - H,dH, = 0 (5.2.3)
?cndvy—ﬁpﬂdey =0 (5.2.4)
H,dv,—H,dv,Fc,dH, =0 (5.2.5)

H, = constant
and
S = constant . (5.2.7)

Here c,, is given by equations (4.3.15) and (4.3.16),1 or by equation
(4.3.20), and may be re-written as follows:

b2 = c;%(c% —a?)(c% —b2) (5.2.8)

H?2

1 It should, however, be noted that in the present case, c, depends on the
solutions p and H, which must be determined hereafter.

where
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From equations (5.2.2) and (5.2.3) we immediately find

[ '
(az—ci)dp+§7d(H§) =0 (5.2.3")
or
dp*
dp

which implies that the wave is compressive in nature.
Introducing the variables « and B through the equations

a = ci/a? (5.2.9a)
and
B = a?[b}, (5.2.9b)
we can further re-write equation (5.2.8) as follows:}
H} = (a=1)(B—a ") H3. (5.2.10a)

The variable « is equal to the square of the normal speed measured in
units of the sound speed. It follows immediately from the definition

(5.2.9a) that
ctdp = an’dp = adp. (5.2.9a")

The variable B is the square of the ratio of the sound speed and the
normal component of the Alfvén speed and, by virtue of equation
(5.2.9b), it can be expressed as

(% \N__vw __» 5.2.9b’
B (sz/4wp) Wi~ Chpm O

in which p,,, is the magnetic pressure in the z-direction. Equation
(5.2.9b") indicates that, apart from the constant factor (2/y), Bis equal
to the ratio of the mechanical pressure to the magnetic pressure in
the z-direction. Since H, is constant, 8 is simply proportional to p;
conversely, p and p when expressed in terms of 8 are

p=7Pp (5.2.10b)
and
p = ppYY (5.2.10c)

1 It should be remarked that the transformation (5.2.10a) is singular for
H, =0, since dH, becomes infinite for H, = 0 [see equation (5.2.11)]. This
special case will be discussed later in connection with the switch-on wave.
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where p and p are constants defined by

A 2 !
p= ;pmll ) (5.2.10b)

and
b= A(S)p. (5.2.10¢")

On the other hand, from equations (5.2.9a) and (5.2.10b,c), c, is
given by the equation

2 = 42 afl- /") (5.2.10d)
where @2 is defined by
s 0D _ P
@=L =95, (5.2.10d’
% s )

We note that a?=ad2B-(/7). Inserting equations (5.2.10) and
(5.2.9a,b) into equation (5.2.3'), we obtain the equationt
oBa—1)dB = y*(a?B—1)da (5.2.11)
where
y*=y/2-y).

Equation (5.2.11) makes it possible to determine « in terms of 8. As
will be shown in the subsequent discussion (cf. Fig. 5.3), the physically
admissible integral curves of equation (5.2.11) can be completely
separated into two branches, one of which will be denoted by o, and
corresponds to the fast wave and the other denoted by «_ corresponds
to the slow wave. Then, corresponding to the solutions of the two
kinds, from equation (5.2.10d) ¢, is determined in terms of 8, and
from equation (5.2.10a) H, is also determined as a function of B.
The velocity components may be found from equations (5.2.2) and
(5.2.4), thus all the quantities may be expressed in terms of the single
parameter 8. Let us now investigate the solution of equation (5.2.11).
In order that o, and «_ be the solutions for the fast and slow waves,
respectively, they have to satisfy the inequalities

Ba,>=1, o, 21 (B >1) (5.2.12a)
and

Ba_<1, a_<1 (Bt < 1) (5.2.12b)
with

B>0, a_20,

which follow from equations (4.3.21), (5.2.9), and (5.2.10a). From the
inequalities (5.2.12a,b) we see that in the («, B)-plane the (+) region,
the region of the fast wave, is bounded above by the two lines o8 = 1

T This equation was first derived by Friedrichs; the systematic derivation
from the group theoretical standpoint was done by von Hagenow (55).
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and o = 1; whilst the (—) region, the region of the slow wave, is
bounded below by the same lines (cf. Fig. 5.3). The integral curves of
equation (5.2.11) may be easily sketched graphically. First of all we
note that the point (« = 1, B = 1) is a singular point (node). In the
vicinity of this point, equation (5.2.11) takes the form

dﬁ — ok *
N—— = X 5.2.11'
a==vy B+2y & ( )

-

Fic. 5.3. The integral curves of B versus o (73).

in which & and § are infinitesimal quantities introduced through the

equations
&d=a—-1 and f=8-1,

respectively. The solution to the above equation has the form
=— _g+Car
y—1

where C is a constant of integration.t At the singular point all the
integral curves have a common tangent with a negative slope
Ph___ v
do y—1’
Furthermore, from equations (5.2.11), the derivative df/do vanishes
on the curve o8 = 1. Hence each integral curve has its tangent

we assume y>1.

t Use the transformation B = f (&) &* and determine k and f(&).
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horizontal at the point of intersection with the curve. From the
inequalities (5.2.12a,b), and equation (5.2.11), it follows also that

% 0. (5.2.13)
do

The over-all shape of the integral curves of equation (5.2.11) is
shown in Fig. 5.3. The non-physical portions of the integral curves
are indicated by dashed lines. From equation (5.2.10a) it is easily
seen that in these portions H, becomes imaginary. The direct
integration of equation (5.2.11) is also easy. Using the same trans-
formation as was used for equation (5.2.11'), we obtain the following
solution:

e = o= 17 Byt [ot o = 107, (5.2.14)

in which the upper and the lower signs correspond to the fast and
slow waves, respectively. The quantities », are the Riemann
invariants, the values of which are determined by those in the constant
state. Since equation (5.2.14) does not depend on the velocity
but essentially on the density and the magnetic field, » will be
called the magnetic Riemann invariant. If y = 5/3 we may integrate
these equations explicitly (73). We now consider the velocity
variation. The equation for the z-component of the velocity,
equation (5.2.2), when written in terms of « and B, is

dv, = ez al/2 g-11+/) gg (5.2.2")
Y
where € is equal to +1 or — 1, corresponding to the minus or plus

signs of ¢, in equation (5.2.2), respectively. It follows from equation
(5.2.2') that

increases
fore =1, x{

decreases

}ifﬂ, p, and pl

increase
decrease} ’
and

increases

decrease
fore=-1, v, .
decreases

increase

}ifﬁ, p, and p{

Thus the tendency of the velocity to increase or decrease in the
z-direction in compression and rarefaction waves is the same as in
the results of ordinary hydrodynamics.
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From equation (5.2.10a), H, can be expressed in terms of o and g as
H

= sgn (%)A/(O‘L%B_—J) (5.2.10a')

where H,, is the value of H, in the constant state and we assume
H,#0. Since in the («,B)-plane H, does not have any zero point
except on the line of =1, it is quite obvious that H, does not
change its sign across the slow and the fast waves, thus

i) == (i)

sgn (5Y) = sgn (=22) .

e ) = sen (3

Eliminating dH, from equations (5.2.4) and (5.2.5) and using

equations (5.2.2) and (5.2.10a’) we have the following equation for
the transverse component of the velocity v,:

H

x

d V(o —1 —1
dv, = —€ ;B—s(u(lmi (ai(% jg(iilf ) sgn (H,, H,) d
or (5.2.4")

_d . o, —1
dv, = F e;ﬁ HLHW/) A/ a:ﬁ— 1 S8 (Hyo Hy)df

where the upper and lower signs correspond to the fast and the slow
waves, respectively. We note that the variation of v, with respect to
a change of 8(p and p) is very different from that of v, and will be
discussed later.

Integrating equations (5.2.2") and (5.2.4'), we obtain the Riemann
invariants r,, and r,,

Poy = v, —eyl df“}_r/z B-tu+amgg
and (5.2.15)

rye = vyt ey dsgn (B L) [ priaram [ %=1 gg

Now, Fig. 5.3 together with equations (5.2.2") and (5.2.4") determines
the behaviour of simple waves. Let us first consider a fast wave
proceeding in the positive direction along the z-axis, the forward
state into which it propagates being specified by p,, Do, H,>0,
H,>0, and v, = v, = 0 or, correspondingly, by B, and «,. Since we
are considering the fast wave, the point («g, B,) must be in the (+)
region of Fig. 5.3. This point will be called the initial point in a sense

o, —1
—1

Xy
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that the behaviour of the wave is described in terms of a development
of the parameter . Passing through the initial point there is one and
only one integral curve. If the wave is the compression wave, it
starts in the direction in which 8 increases whilst for the rarefaction
wave it starts in the direction of decreasing 8. If 8 (p and p) increase,
then « and consequently c, increase [cf. equation (5.2.9)] and by
virtue of equation (5.2.10a’) and the initial condition H, also increases.
In this case the characteristic slope v, +c, increases as B increases,
since v, also increases [cf. equation (5.2.2")], the fast compression
wave can therefore tend to a shock. We thus see that the character-
istic feature of the fast compression wave is similar to that of the
ordinary hydrodynamical compression wave. As may be seen from
equation (5.2.4’) the transverse velocity component, v,, decreases in
the fast compression wave, namely, the particle moves in the negative
y-direction and the magnetic field increases in the positive y-direction.
If B decreases, c,, H,, and v, decrease and the characteristic slope
also decreases. If B continues to decrease so that the point on the
integral curve approaches the critical curve Bo =1, then H,
approaches zero. In this case the rarefaction is said to be complete.
It should be noted that even in the complete rarefaction limit the
density is finite ; consequently, in the fast rarefaction wave cavitation
does not occur.

We consider secondly a slow wave propagating in the positive
direction of the xz-axis and for the forward state we assume a
condition of a form similar to that of the fast wave so that the
initial point (o, B,) lies in the ( —) region of Fig. 5.3. If the waveisa
compression wave for which B8 increases, «_ and consequently c,
increase. Since a_<1, a_B<1, from equation (5.2.10a’) we see
that H, decreases as 8 and «_ increase and that it approaches zero
as the point (o, 8) approaches the critical line o = 1, where the
compression is complete. It should be noted that the final state of
this switch-off wave in which the magnetic field becomes vanishingly
small after compression is characterised by the condition g>1
(i.e., a>b,). Since v, also increases, the characteristic slope steepens
and the wave can tend to a slow shock, whilst the transverse velocity
v, given by equation (5.2.4) increases. On the other hand, in the
slow rarefaction wave for which 8 decreases, o_ also decreases and
the integral curve can reach the line 8 = 0 where cavitation sets in
while the magnetic field H, increases. The x-component of the
velocity, v,, decreases and the characteristic slope becomes smoother.
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The transverse component of the velocity, v,, also decreases. We can
summarise the behaviour of the simple waves as follows:

In the fast wave [in the (+) region]: the mechanical pressure and
the magnetic pressure change in the same sense, i.e.,

pT’me a'nd pispmi;

and the maximum rarefaction is given by p,, 0.
In the slow wave [in the (—) region]: the mechanical pressure and
the magnetic pressure change in opposite senses, i.e.,

ptp.)  and  pl,p,t.

The maximum compression is given by p,, — 0. The complete rarefaction
is given by p = 0 (cavitation).

The change of the z-component of the velocity v, has the same
sense as the corresponding change in ordinary hydrodynamics. The
change of the transverse component of the velocity, v,, is determined
as follows.

If esgn (H, H,,) > 0, then v, and p,, change in the opposite sense, i.e.,

v, Pl and O
If esgn (H, H,) <0, then they change in the same sense, i.e.,

vyT’me a’nd vyl/spml’ °
The above property can be seen more easily from the equation

LA
4mpc,

which follows directly from equation (5.2.4). The fact that in the
slow wave the transverse magnetic field decreases as the fluid is
compressed is connected with the transverse motion of the fluid and
can be explained by using the frozen-in condition. We again assume
the same condition for the forward state and consider the train of
slow waves of width I. Suppose that after a time ¢,, it is compressed so
that the width decreases to ', at the same time H, approaches zero at
the tail of the wave train (cf. Fig. 5.4). The fluid element initially
occupying the rectangular domain 4BCD is assumed to move to the
domain A'B’C'D’ after the time f,. Let the angle between the base
vector of the x-axis and the normal to A’B” be §. Then, by virtue of
the conservation of magnetic flux through 4B, we have immediately
that H,yAB = H,cos 0 A’B’ which implies cos 6 > 0; namely, that the
fluid element moves such that v, increases. This result also follows

dv, = —esgn (H, H,)

H,| (5.2.4")
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from equation (5.1.5), the y-component of which reduces to

A¢
0= H,,0+HI—A-; (5.2.16)
with
Ax = —(4B)<0. (5.2.17)

Finally we investigate the special case H,, = 0. Let us consider a
constant state, H, = 0, H,#0, p = py, v, = v, and v, = v,. This

Y

Fic. 5.4. Anillustration of the translation of an element of the wave front.

state corresponds to a point on the curves af =1 or o = 1. If we
calculate the values of dH, and dv, at this point using equations
(6.2.10a) and (5.2.11) we find that they are infinite, consequently the
method of solution used so far is not applicable on these curves.
Alternatively, from the original equations (5.2.1) to (5.2.6) we have
immediately that

dv, = dp = d(H3+HE) = 0,  dv, = + 20
‘/477'P0
and
dv, = + dﬂ
‘/47"Po

if the point is on the curve o8 = 1 on which ¢, is equal to b,,.
As will be shown in the next section, the state which is connected,
through the above relations, with a constant state is a transverse



212 5 ¢ SIMPLE WAVES

wave. However, in the present case \/H?,+H§ is initially zero and
hence there is no change of flow and field and the solution is trivial;
in other words, there do not exist any fast, slow, or transverse
simple wave regions adjacent to the constant state under considera-
tion. The remaining possibility is that the adjacent state is a pure
gas wave which implies that c, is equal to a, i.e., « = 1. In fact,
from equations (5.2.1) to (5.2.6) we can have, for ¢, = a, the solution
of a pure gas wave

vz=if%dp, H =H=0.

Thus we may conclude that the state adjacent to a constant state
characterised by H, = H, = 0 is a pure gas wave and that there does
not exist any switch-on simple wave though of course there exist
simple waves arbitrarily close to a switch-on simple wave. By a
switch-on simple wave we understand that a transverse magnetic
field is produced in crossing over a simple wave region from a
constant state without transverse magnetic field and conversely for
a switch-off simple wave.

(17) TRANSVERSE SIMPLE WAVES AND
CONTACT LAYERS

If the root ¢, is equal to b, we have transverse sstmple waves. Using
the results of Section 4.2 we can obtain the following equations:

dp=dv, =dS =0 (5.2.18a)
dv, = %, H I 4ﬂp SLp): (5.2.18b)
H,dH,+ H,dH, = 0 (5.2.18c)

where the F signs in equation (5.2.18b) correspond to the C-
characteristic equations dz/dt = v, + b, respectively. It follows from
the above equations that p, v,, and § are constant and that

H, = Hysiny (5.2.19a)

H, = Hycosy (5.2.19b)
and

v, = F sgn (H,) HjV4mnp+ A (5.2.19¢)
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where H,, is constant, A is a constant vector, and i is a parameter.
Equations (5.2.19) imply that the magnitude of magnetic field is
constant over the transverse simple wave so that the magnetic field
only rotates. The rotation of the magnetic field in space can be
determined initially in terms of the parameter i, and in the course of
propagation the shape of the wave thus determined is shifted without
distortion with a constant velocity b,. As a result the initial dis-
continuity propagates without being resolved whilst smooth waves
do not tend to discontinuous ones; namely, the transverse shock
cannot be formed from smooth waves. Ifc, is equal to zero, we obtain
contact layers. As was already explained for infinitesimal jumps, if
H,+0 over a contact layer then only p and S change and all other
quantities are constant.

The very important feature that there does not exist any shear
flow layer should again be emphasised. Conversely, if H, = 0, all
quantities may vary except the relation p* = constant, and the
hydrodynamical analogy is applicable. It can easily be shownt that
for both transverse waves and contact surfaces relations of the form

(V, A0 ptk) = 0 (2.4.22)
hold (i.e., they belong to the exceptional case). This is simply the
mathematical expression of the special property of the transverse

and entropy waves that they never tend to discontinuous waves if
they are smooth initially.

t See Appendix E.



MAGNETOHYDRODYNAMIC
SHOCKS

6.1. THE CONSERVATION LAws

AccorpING TO THE general theory of shocks, magnetohydrodynamic
solutions involving discontinuities such as shocks are governed by
the conservation laws (4.2.1a), (4.1.8), (4.2.2a), and (4.2.3a). In one-
dimensional propagation characterised by the condition that all the
quantities are functions of x and ¢ only, these equations may be
brought into the matrix form

U+F, =0 (6.1.1)
‘where U and F (U) are column matrices given by

- p W
pVs
$pv®+ pe+py,
U= pv, (6.1.2a)
H?/
P,
L H, J
and
- pu, —
puz+p*
7)2
vx(%"’/’e"'pm)"'vzp*—:z_r}]xv'H
v
F=| pvo,—=HH, . (6.1.2b)
H,v,~v, H,
Pvzvz—z’;:Hsz
— szx_vsz —

214
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By means of the subsidiary condition V-H = 0, H, is constant. As
well as the above equation we must supplement the entropy increase
condition across the shock,

ds8=0. (6.1.3)

The jump conditions across a discontinuity will be presented in a
closer analogy with those across an infinitesimal discontinuity,
(4.3.1) to (4.3.13) [or the relations across the simple wave, (5.2.2) to
(5.2.5)]. Although we assume a plane shock with constant propagation
velocity, the results would still be applicable for the general case so
far as local jump conditions are concerned (59).

As an immediate consequence of equation (3.1.7), we have, from
equation (6.1.1), the jump conditions across a discontinuity:

[p,] = 0 (6.1.4)
[pv, T, +p*] = 0 (6.1.5)
5 (P o2 e w_ M . _
[%(2” +pe+8ﬂH)+vzp 477sz H] 0 (6.1.6)
[pvyﬁz—ﬁﬂzﬂy] =0 (6.1.7)
(6, H,— H,v,] = 0 (6.1.8)
[p'vz 5I—£;Hxlg] =0 (6.1.9)
(3, H,— H,v,] = 0 (6.1.10)

where ¥, is the z-component of fluid velocity relative to the
discontinuity and so _

Ty=v,—A (6.1.11)
where 2 is the velocity of the discontinuity and will be assumed to be
constant. In the following analysis we refer to the coordinate
system moving with the discontinuity and denote the flow velocity
and the magnetic field in this coordinate system by ¢’ with com-
ponents (v, v;,v,) and H' with components (H, H,, H,), respectively.
Then, by virtue of the Galilean transformation law, H is invariant
and the flow velocity is transformed through the equations

’ Y ~
v, =v,—A =17,
,_
Uy =Yy
v =,
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Hence in place of v' and H’ we may, without confusion, use the
expressions (9,,v,,v,) and (H,, H,H,), respectively. We note,
however, that the electric field E is not invariant but undergoes the

transformation
E,.=E,

E,=E,+\H,=—~,H,+v,H, (6.1.12)
E,=E,~-XH,=%H,~v,H,.

The above equations demonstrate that equations (6.1.8) and (6.1.10)
are equivalent to the continuity of the transverse component of the
electric field in the coordinate system moving with the discontinuity.
The equation of the discontinuity in this coordinate system can
obviously be given by

x=0.

If fluid crosses a discontinuity surface, the discontinuity will be
called a shock.

In a sense similar to that of gas dynamics the conservation laws,
excluding equation (6.1.6), will be referred to as the mechanical
relations since they are independent of thermodynamical quantities.
Using the notations (> and [@] associated with any quantity @ and
introduced in Section 3.6, we can rewrite the mechanical relations as
follows:

m[r]—[v,] = 0 (6.1.4')
mlv,]+[p]+ 4= CH> [H] = 0 (6.1.5)
mlv,] 4% H,H]=0 (6.1.7)

m{ry [H,]+ <Hy> [v.]— Hx[vy] =0 (6.1.8)
mlv,] — = H[H] = 0 (6.1.9')

mdry [H,)— Hy[v,] = 0 (6.1.10')

where 7 = p~! and m is defined by

M = p1Vz1 = PoVzo

and the coordinate system is so chosen that (H,) vanishes. These equa-
tions correspond precisely to the system of equations (4.3.1) to
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(4.3.13) if we establish a correspondence between
m, {1y, —[717[p], <H»
¥ pcy, p7Y pPa?, H,
[v2)s (9], [v.]), [7], [H,], [H]
8v,, 8v,, 8v,, —p~28p, 8H,, 8H,.

Thus we may easily obtain the equation for m (or for the shock
velocity A) for, corresponding to equations (4.3.20) or (5.2.8), we find
for the fast and slow shocks that

and
and between

and

(2 + (17 [p) 2 = <oy 1 22 = oyt £ e

(6.1.13)
and corresponding to the transverse wave we have

(rymE— "Z’ =0. (6.1.14)

Let us now rewrite the energy conservation law (6.1.6). Using
equations (6.1.4'), (6.1.5"), and (6.1.7") to (6.1.10") and eliminating
[v] and {v)> we transform equation (6.1.6) into the following form:

m{[e g o] 1) (o> + b < = o 12) = L (o)D) = 0

where H, is the transverse magnetic field defined by

H=H-H,.
Noting the relations

{Hp-[H|] = }[H}] and CHP) —<Hp? = }[H)?
we finally obtain

m=0 (6.1.6a)
or

[e+<{p>7] = ——[T] (H,]?. (6.1.6b")

The left member of equation (6.1.6b’) is the Hugoniot function of
ordinary hydrodynamics. In this sense the equation is called the
generahsed Rankine-Hugoniot relation. The equation in this form
was given by Liist (69). Equation (6 1.6a’) corresponds to an
entropy disturbance in a small amplitude wave and can be identified
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as the condition for contact discontinuities across which there is no
flow of fluid. Combining equations (6.1.13), (6.1.14), and (6.1.6a’)
we classify the hydromagnetic discontinuities as follows: fast and
slow shocks, transverse shocks, contact discontinuities. Equations
(6.1.4') to (6.1.10') and (6.1.6a’,b’) together with the entropy
condition [8]> 0 serve as conditions determining the jumps across
discontinuities.

As was already indicated in Chapter 3, the solutions satisfying
this set of conditions are admissible solutions but are not necessarily
physically relevant. To obtain physically relevant solutions we must
supplement these conditions by the addition of the evolutionary
condition. In ordinary hydrodynamics the evolutionary condition
was fortunately identical with the entropy condition but in magneto-
hydrodynamics this is not the case (43,44,66,74,84).f In the
following discussions the jumps across discontinuities are determined
by using the evolutionary conditions in addition to the jump
conditions.

Finally we note the symmetric properties of equations (6.1.4") to
(6.1.10"). It is easy to see that these equations are invariant under
the following transformations involving the configuration of flow
and field:

H,—~>—-H,

[0, — [v,] (6.1.15a)
[v.]>—[v.];

H,—~—H,

Hy>—H, (i=01) (6.1.15b)
[H]—>—[H,];

H,>-H, (i=0]1)

(21> =1v] (6.1.15¢)
[H]—->—[H,]

[v,]—>—[v.].

Hence we can, without loss of generality, discuss a special configura-
tion of the magnetic field ahead of the shock such as H,>0, H, > 0.
Other cases can be derived from the results so obtained by means of

t It has recently been proved that the evolutionary condition implies the
entropy condition (see Appendix E).



6.2. FAST AND SLOW SHOCKS 219

these transformations. It is also obvious that equations (6.1.4") to
(6.1.10") are invariant under the reversal of coordinates. (Note that
for shocks [@] is independent of the choice of coordinates; cf.,
Section 3.6.)

In the following calculations for shocks we shall first refer to a
special coordinate system where the x-axis is oriented in the direction
of n, the unit vector directed from ahead of to behind the shock,
i.e., directed towards the region into which mass flows. Then,
replacing v,, ¥,, and H, in the results thus obtained by v,,, ¥, and H,
we may obtain forms independent of the choice of the direction of the
z-axis (see Appendix D).

6.2. FAST AND SLOW SHOCKS

Let us first investigate the mechanical relations for the fast and
slow shocks. By analogy with equations (4.3.21), (6.1.13) gives

m2 < —[7]7 [p] < m} (6.2.1a)

and
2

miry< B Hw m(r (6.2.1b)

where m, and m, denote the values of m corresponding to the fast
and the slow shocks, respectively.

In view of the correspondence established in Section 6.1, the
solutions corresponding to equations (4.3.19) become

2
[r] = —-e((r} mz—%) (6.2.2)
[v,] = [7,] = em( —<{r) mz) (6.2.3)
[v,] = em ’;—}fv CH,> (6.2.4)
[H,] = em*(H,> (6.2.5)
[v]=[H]=0 (6.2.6)

where e is a parameter characterising the jump across the shock.
Equation (6.2.6) indicates that across the shock there is no rotation
of flow or magnetic field in the plane of the shock, and choosing
{H,» = 0 implies that

H, = H,
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Hence, by virtue of equation (6.2.6), we can refer to a coordinate
system such that the z-components of the magnetic field and of the flow
velocity are zero. Moreover, the - and y-components of the magnetic
field ahead of the shock, H,, and H,, will be assumed to be positive
(see Fig. 6.1). As was noted earlier, by virtue of the symmetry of the

A
O] (0)

-— Vy -
X X0

% H)’O

z HXo

Fic. 6.1. The configuration in a shock.

conservation laws, this special choice does not lead to any loss of
generality. In this section H,, H,, and H, will be assumed to be
finite. The limiting cases where at least one of them vanishes will
be discussed separately in the next section.

Now we proceed to investigate the thermodynamical relation.
From Theorem B.1 of Appendix B and equation (6.1.6b’) it follows
immediately that the fast and slow shocks are compressive—i.e., the
density, the pressure, and the internal energy increase across the
shocks provided the usual properties of gases, C,, C}, C,, and C; of
Appendix B, are assumed. In what follows we shall assume a poly-
tropic gas so that these assumptions are automatically satisfied.

We now discuss the evolutionary condition. Corresponding to
equation (1), Appendix E, we introduce § 7 through the equation

a
P %
dv,
38
~ v,
sV = _ . (6.2.7)
u
;‘;;; 5

dv,

I
//m SHZ
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Then, noting v, = H, = 0, and referring to the coordinate system
moving with the shock, we have on either side of the fast or slow
shock the linearised Lundquist equations

_ ST+AST, =0
where 9 takes the form

7, a 0 0 0 0 0

a 5, pdp 0 Ly 0 0
T 8 47TP Y

0 0 ) 0 0 0 0

o _ 5 0
0 anp H, 0 amp e O 0
5 K
0 0 0 0 0 7, A/ Trp

From equation (6.1.2a) 8U is given by 8U = V,U 8V through the
transformation matrix V, U, the representation of which is

P 0 0 0 0 0 0
a
g v, p 0 0 0 0 0
p (v pp
a (—2- +e+pe p) PV, pes pu, A/ in H, 0 0
V.U = )
v Lo, 0o 0 o, 0 0 0
2
0 0 0 0 L S
o
0 0 0 0 0 p 0
n
0 0 0 0 0 o [="P
_ ©
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The matrix 4 of equation (3.4.7) has the same eigenvalues as q,
namely, 9, +¢,, ¥,+c,, ¥,+b,, and 5,. The eigenvectors E® of 4
may be calculated from the eigenvectors of 9 by means of the
transformation matrix V, U.

Since all the eigenvalues of 4 differ from zero the shock is a
genuine shock ; so, since n = 7, the number of outgoing waves must be
equal to six. Recalling the inequality (4.3.21), and noting that ¥, is
positive, we may easily calculate the number of outgoing waves from
Fig. 6.2.1

Vx,r

3+7=10 3+6=9 2+6=8 2+5=7
‘A

3+6=9 3+5=8 2+5=7 2+4=6
b, .
' 7

2+6=8| 2+5=7 [71+5=67; 144=5

AN

Cs, //7////////////////,

2+5=7 2+4=6 1+4=5 1+43=4

Cso bxo Sfy V:'o

F1c. 6.2. The diagram for the number of outgoing waves. The first number
equals the number of Alfvén waves, and the second is the total number of fast,
slow, and entropy waves. The left and upper border lines of each block belong
to the block (74).

For instance, in the block corresponding to the region ¢, < ¥, < by,
0<%, <cy, we have two outgoing Alfvén waves with the velocities
U0 —byo(<0) and o, +b,,(> 0) together with one outgoing entropy
wave with the velocity 7,,(> 0) and three outgoing magnetoacoustic

t It should of course be noted that Fig. 6.2 is merely a conventional one to
calculate the number of outgoing waves. As will be shown later, when the
state ahead of the shock is given, the state behind the shock and ¥,, are deter-
mined in terms of the parameter [H,]. Consequently, as %,, varies, the changes
of ¢4, b,,, and c;, are not arbitrary but are determined through the parameter
[H,]. However, what is essential is that by virtue of the inequality (4.3.21),
the lines representing the changes of ¢,,, b,,, and ¢,, never cross each other. The
actual changes of them are illustrated in Figs. 6.6 and 6.8. We note here that
without the inequality (4.3.21), Fig. 6.2 loses its meaning.
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waves with the velocities #,5 — ¢( < 0), ¥, + ¢, (> 0), and ¥, + ¢, (> 0).
In order that the evolutionary condition is satisfied, it is necessary
that the state of the flow ahead of and behind the shock front must
satisfy the relations given by the shaded blocks in Fig. 6.2. This is,
however, not a sufficient condition. The necessary and sufficient
conditions given by (E.2) are that the six vectors E{% corresponding
tothesesix outgoing wavesand the vector [U] be linearly independent.
As can be clearly seen from equation (6.2.8), the eigenspace of U is
divided into the two subspaces Q; and Q,, one of which, Q,, is five-
dimensional and is composed of four magnetoacoustic waves and one
entropy wave whilst Q, is two-dimensional and is associated with
the two transverse waves. It follows from equation (6.2.9) that the
eigenspace of A is also divided into the same subspaces. On the
other hand, [U] takes the form

[ [p] i
[pv,]
[(p/2) v®+ pe + (p/8) H?]
[pv,] (6.2.10)
[H,]
0
0

and consequently it belongs to Q,. When the E{*) and [U] are linearly
independent each subspace must be spanned by these vectors, hence
the number of outgoing waves which belong to Q; must be 4 and there
must exist two transverse waves so that Q, is complete. Thus from
the shaded regions of Fig. 6.2 there are two, the lowest and the

highest, which are permitted, namely, we have

[0]

Dpo>Cro5 by <¥y<cy (6.2.11a)
and
CoS<Tpo<byy,  Tp<cy. (6.2.11b)

Equation (6.2.11a) shows that ahead of the shock the flow speed is
greater than the fast disturbance speed (super-fast) and behind the
shock it is smaller (sub-fast) and equation (6.2.11b) shows that ahead
of the shock the flow speed is greater than the slow disturbance
speed (super-slow) and behind the shock it is smaller (sub-slow).
Hence we define the shock satisfying condition (6.2.11a) to be the

t Since the shock is a genuine shock, equations (3.4.11) are independent.
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fast shock and one satisfying condition (6.2.11b) to be the slow shock.
Since shocks are compressive, i.e., p; > p,, We can see easily that the
inequality (6.2.1b) is satisfied automatically when the evolutionary
condition is fulfilled. From the mechanical relations and the evolu-
tionary condition we can also derive the important property of the
jump of the transverse magnetic field. Eliminating ¢ from equations
(6.2.2) and (6.2.5) we have

—[r]m?
= M . .1
) = oy m — (uHEam) (6:2.122)
after trivial calculations we find that

H

V0 B (Poﬁ.’zco_Pl bazco) B Pl(ﬁil_bil) '

So, by virtue of the evolutionary condition (6.2.11), we obtain
(Hy>0)
H,>0. (6.2.12c)

Accordingly, from equation (6.2.12a) and the condition (6.2.1b)

we have
[H]>0, ie, H,>H,

for the fast shock and
[H,]<0, ie., H,<H,

for the slow shock. So across the fast shock the magnitude of the
magnetic field increases whilst across the slow shock it decreases.
However, in view of equation (6.2.12¢), the transverse magnetic field
does not reverse its direction. It should be noted that the transverse
magnetic field may reverse its direction, i.e., the inequality (6.2.12c)
does not necessarily hold, if the evolutionary condition is not taken
into account. By analogy with the properties of simple waves we can
also show that fluid moves in the transverse direction in such a way
that the magnetic flux passing through a fluid element is conserved
in crossing the shock. (The effect of joule heating appears in the
entropy increase only, as does that of viscosity.) In order to
demonstrate this, ahead of the shock we refer to the system of
coordinates in which the flow velocity is parallel to the magnetic
field so that

L= ie., vy =H19,0Hy,.
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Then, by virtue of equation (6.1.8), v,, is given by

— H-15
vyl - Hx Un1 Hyl

and thus we may always refer to a coordinate system in which the
flow and the magnetic field are parallel both behind and ahead of
the shock. This is simply due to the conservation of magnetic flux.
For instance, let a fluid element ahead of a shock be ABCD and
suppose that it changes to A’B’C'D’ after crossing the shock. Since

z
(@ (]

Fic. 6.3. A picture of (a) fast waves and of (b) slow waves in the coordinate
system in which v and H are parallel [Bazer and Ericson (49)]. Copyright
(1959) by The University of Chicago.

fluid is not compressed in the y-direction we may assume that
AB=CD=AB =CD

and hence the magnetic flux through 4B is obviously conserved (H,
is constant), while the magnetic flux passing through AD and A’D’ is
zero. (We also note that this is equivalent to the continuity of the
z-component of the electric field.) Since across the fast shock
H,>H,, we have Fig. 6.3a, whilst across the slow shock H, < H,
and we have Fig. 6.3b. Again, using the analogy with the jump
conditions of ordinary hydrodynamics, we now consider how the
state behind the shock can be determined by specifying the state
ahead and the jump of one quantity. This was performed completely
by Bazer and Ericson (49,50). Their method was to specify all the
quantities ahead of the shock, py, pg, Hyg, v,9, and v,4-and the jump of
H, and to determine the state behind the shock and the shock
velocity A or, equivalently, 7,,. Their results are admissible since they
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satisfy the entropy increase condition but they were not chosen
subject to the evolutionary condition, and so in the following
discussions we shall explain them by supplementing the evolutionary
condition. From equations (6.1.13) and (6.2.12a) we have

m?[r] = —[p]— L= [H,1<H,). (6.2.13)

On the other hand, writing the first equality (6.2.12b) in terms of
ps Po» and m we obtain
[H,] [P]) pHE [H,]
m2r ( v — = . 6.2.14
! Hyo Po 4m Hyo { )
Using the polytropic relation e = pr/(y —1) we can eliminate m and
p, from equations (6.2.13,14) and (6.1.6b’) and obtain the relation
between [r] and [H,] given in equation (6.2.15), whilst eliminating
m and 7, leads to the relations between [ p] and [H,] given in equations
(6.2.16), thus

_ [ —4yhsinb,— (1—s,) ) +VR(R) (R))

o h{ 2s,8infy—(y—1)A [ (6.2.15)

1yhsin 6y — (1 —s,) + VR(R)
2sinf,— (y—1)A

ARTI R

So{ Eh +h(1 — (9/k)sing,) |’ (6.2.16b)

with 7, n, h, ¥, 6,, 8o, and R defined as follows:

Y= :Zi{—%h2+h( )} (6.2.16a)

- [p] P1 -
= -—, =—=1+
K Po K Po 7
p=Ubl g _ErE, (=0
0
-l oy B,y
Do Do
YPj -
amme V=00

sin0j=H—W, 0°<6;<90° (3=0,1)

R(h) = R2[1y*sin®y— (y — 1)] + hsin 6y(2 —) (1 +5,)
+454sin% 0y + (1 —8,)2. (6.2.17)
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From the mechanical relation (6.2.12b) the fluid velocities relative
to the shock #,, and 7,, are easily expressed in terms of 2 and 7 as
follows:

On1 _ i Vo0 _ ! 6.2.18

b =" b 1= (/RSO (6219)
and hence the shock velocity A ( = v,9—1%,0) follows immediately
from the above equation.

The jump of the transverse velocity [v,] follows from equations
(6.2.4) and (6.2.5); using (6.2.18) we find

] _ buh _ R _ 1_7) . ]1/2 ,
b,y ~ 7. 0080,  cos0, 1 7 sinf,| . (6.2.18)

We thus see that given A and specifying the state ahead of the shock
determines the shock velocity and the state behind the shock. We
now discuss fast and slow shocks in detail.

(t) FAST SHOCKS?T

Summarising all the conditions to which the jumps are subject we
have:
The entropy condition implies

;>0 (S.1)

¥,>o0. (S.2)
The mechanical and evolutionary conditions are

hy>0 (E,.1)

Cpn 20y >bly (E;.2)

Wo=ch. (Ee.3)

[(E¢1) is a consequence of equations (6.2.12) and the others are
evolutionary conditions.]
Since all the quantities must be real, we have the reality condition

R(k;)>0. R)
Finally we state the condition:

the state behind the shock depends continuously on a parameter
characterising shock strength which will be taken as A.  (C)

t Quantities referring to fast shocks are denoted by a subscript or
superscript f.
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Introducing X through the equation

2
from (S.1), (E;.1), and equation (6.2.16b) we can see immediately that

X, _ (17/h;) —sin b, >
hy — 1—(q;/h,)sin,” "’

2
x-Sy,
14

(S.3);

or

sin 6, <7,/h,; < 1/sin b, . (S.4);
The condition (S.4); shows that (S.1) is always satisfied provided
(E;.1) and (S.3); are fulfilled. [(S.4) is more severe than (S.1).]

Introducing 7,/h; obtained from equation (6.2.15) into (S.3) leads

to the expression

X (B4R 8.5

-E——(Bi Rx)/C>0 (S.5)
in which the superscripts + of X, correspond to the + signs of the
root on the right-hand side and B, C, and Ry are, respectively, given
by the equations

B = (y/2) hysin 6, — (1 —s,) (6.2.19a)
C = 2sinfy— (y—1)A, (6.2.19Db)
R=Ry = B*+C(h,+2s,sinf,). (6.2.19¢)

In view of the expressions.(6.2.19), the inequality (S.5); and (R) turn

out to be the required conditions on h, The behaviour of XF/h,

which is consistent with the condition (C) is plotted in Fig. 6.4.
The solid curve in Fig. 6.4 is realised if the condition

B= B(ib,) =

,},lem2eo_(l_so)>0,
ie.,
sin26
59> 1=y 5000 (T.1)
o2 T -1

holds where f», is given by the zero of C as
b, = (il) sin 6, . (6.2.20)

The dotted curve applies under the condition

sin%6, T.2
(y—1) 2

So<1l—vy
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where 2, is the root of the equation Ry = 0, i.e.,

£ sin (2 — ) (1 +8o) + 2 cos B,V (y — 1) (1 —50)2 + 8, ¥ sin? 6,
a 2(y—1)—}y*sinf, '

(6.2.21)
I
1 \\\‘/rxf/hf
SN
%]
hr /{’f—xfj/hf

(1-s0)(y=1)-psin’6,

 (1-so) + 458in20,=01-5,) &
2sinby

l
|
|
|
2

° hp—>hr b

Fic. 6.4. The curve of X,/h, versus h, [Bazer and Ericson (49)]. Copyright
(1959) by The University of Chicago.

The upper branch of the curve is given by X;/k, and the lower one
by X}/h;, the two branches join smoothly on the line

h=h,.

Fast shocks satisfying the condition (T.1) will be referred to as
type-(1) shocks and those given by (T.2) as type-(2) shocks. On the
other hand, the shocks corresponding to X} and X; will be referred
to as those of the positive and negative branches, respectively. The
detailed explanation concerning the derivation of the above properties
of X# is given in Appendix C.

Once the variation of X} with respect to A, is known, 7, as a
function of %, is given by the first member of (S.3);. The maximum
compression follows directly from (S.4);. The pressure change is

given by the definition
7 -2 (x- M
! ! 2]’

So
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whilst the changes of ¥,,/b,,, ¥,0/bs, [v,]/bs;, and m are calculated
easily from equation (6.2.18) when 7,/h, is known. The entropy
jump in terms of the temperature 7' is given by the solution

T,d[S] = {[r]*+ [H, ]} H2} m dm (6.2.22)

which was also proved by Bazer and Ericson (49). All these quantities
have different behaviours for the type-(1) and type-(2) shocks. We
note here that if s,> 1, all fast shocks must be of type-(1) and if
8o < 1 they are all of type-(1) for , larger than a critical value and are
certainly of type-(2) for sufficiently small angles.

Let us now summarise the main tendency of the change of these
quantities with respect to A, [The proof is not straightforward
and the details are to be found in (49, 50).]

(a) The Type-(1) Shock:
(only the positive branch is admissible)

sin? g
So=1— o
)
The range of &;:
0<h,<ﬁ,=?yi——_n%’ (= 3sinf, for y = 5/3)

iy, ¥, 0 /by, 9L [bLo, m,, and [8], vary in the same sense, namely, they
increase or decrease according as , increases or decreases, respectively:
ﬁfma.x = 2/(7’_ l)
},fmax = (5xl/bzl)max = (5zo/bzo)max = ([S]f)max = 0.
The changes of these quantities with &, are plotted in Figs. 6.5a,b for
the values of s, =1 and 1/16, respectively. [For sy =1, all the

shocks are of type-(1) whereas for s, = 1/16, only the shocks
corresponding to values of 6, > 37° 46’ are type-(1).]

(b) The Type-(2) Shock:
sin2f,

(y=1)°

o< 1—vy
The range of h,;:
0—>iz,—>ﬁ, for X}, the positive branch
2,»&, for X7, the negative branch.
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For the positive branch 7, ¥;, 9f,/b],, #.,/bL,, m,, and [S], increase
monotonically as A, increases and assume their maximum finite
values at h, = ﬁ at which point their derivatives with respect to &,
become infinite ; on the negative branch, as A, decreases from ﬁ, to &,
7, increases monotonically to the finite value 2/(y—1) while the
remaining variables increase monotonically to +oo, approaching
the line A, = fa, asymptotically. The positive and negative branches
of all the quantities join smoothly at ii,. These features are clearly
shown in the type-(2) curves of Fig. 6.5b for the values of 8 < 37° 46’
and for the value of s, = 1/16.

So far we have not taken into account the evolutionary conditions
(E¢.2,3). Since it follows immediately from equation (6.2.18) that
oL > bf /., the conditions which must be examined for validity are

oy <cp (Ee.2)
Blo>Cho) (E¢.3)

stating that the flow is sub-fast behind and is super-fast ahead
of the shock. The latter condition (E,.3) is easily proved by noting
that 9, becomes c, for A, = 0 and increases as %, increases. It can
also be proved that the former condition (E,.2) is valid for the range
of h, obtained so far. Therefore for the fast shock the evolutionary
condition does not imply any further condition. The proof of the
inequality (E;.2) was established by Bazer and Ericson (50) and
since it is complicated we mention only its outline.
The proof is essentially based on the equation

2
@+ By +adth, + 03— () G = 0 (6223)
1
in which G, is given by the equation

G1=—[-r]{ 1— 2, /b2,)~2 tan? § (%-’%ﬁ%(l-%ﬁ}.
(6.2.24)

The derivation of the above equation is given by Bazer and Ericson,
and we note here that it is valid for both the fast and the slow shocks.
For the fast shock it can easily be seen that

dm?
(dPl) G20,
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004 3sinf0°  3sin 20° 3fsin 30° , 3sin60°  3sin 90°
*
80y, 0’0 c’o © © ©
4 Fast magnetic shock (s=1)
60 All curves are type 1
40 Maximum hp=3 sinBq
60° 90

20

o (a)
20 7 V 90°

(b)

he — 7/
afo ag /f//oo
80%,
Cry J ____3/.92--—”’ C_;;_,_
AR - -
oh I S T
% b{_| (e)
n,\ hf‘—’ af)
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I} @©

(@

(e)

30

Fic. 6.5a. Illustrating the dependence in fast shocks of ¥, 7, 1 /15
Cs1/bh,15 D) ,0/0n0, @0d [S],/c, on the shock-strength parameter h, for several
values of the parameter 6, and for a fixed value of the parameter s,, namely,
8o = 1. All curves are type 1; maximum k, = 3 sin 6, [Bazer and Ericson (49)].
Copyright (1959) by The University of Chicago.
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100 7, & N '
80
60 _0°\ Fast magnetic shocks (s =)
N Typel: 6,> 37°46’
40 Type 2: 6y 37°46’
20 - Lo (@)
3sinl0 3sin 30° 3s';n37°46’ 3sin60°  3sin90°
0
—— o h —_
307 | 5 e L °
204" W 20") 39 6 %0
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60 60° c —
LRI A |
4.0— — _f_|_
b1
07 ~f
20 Vot (c)
-0 nyd
_ CD/ hf—b
8:0- 60°
6-0_
4.0-.
d
2.0 (d)
0
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F16. 6.5b. Illustrating the dependence in fast shocks of ¥, 7, ¥ /b7 |,
Cs,1/0%, 1> % .0/bn, 0, @nd [S],/c, on the shock-strength parameter h, for several
values of 6, and for a fixed value of the parameter s,, namely, s, = 4.
Type 1: 6,>37° 46”; type 2: 6,< 37° 46’ [Bazer and Ericson (49)]. Copyright
(1959) by The University of Chicago.
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then, by comparing equation (6.2.23) with equation (4.3.20) the
proof results immediately.

Finally, to illustrate the validity of the evolutionary conditions,
using the results of Fig. 6.5 we show in Fig. 6.6 the relations among
the velocity ratios #,,/b,,, ¢/1/b,,, and §,4/b,, for sy = 1/16 and 6, = 30°.
It is evident that the actual shock state represented by the curve

0° cr/bs,

28 ?6 1 il f / -
: - vz, /bx,
| -

i /
|
| ///M//M/M_////
|
|
l .
1 °f /b"o V:o/ bzo

Fic. 6.6. The relationship between the velocities of flow and small
disturbances ahead of and behind a fast shock. 6, = 30°; s, = {5 [Bazer and
Ericson (49)]. Copyright (1959) by The Umverswy of Chicago.

/b, starts from the weak limit corresponding to ¢;y/b,4 and increases
always in the evolutionary region as [H,] increases from 0 to +oo.

(12) sLOW sHOCKST

The conditions (S.1), (S.2), (R), and (C) are also valid for the slow
shock quantities 7,, Y,, R(h,), etc., while the mechanical and
evolutionary conditions become

<H, <H, (E,.1)
vil SCq (E,.2)
Coo S TSg < b, . (E,.3)

In what follows we define &, by the equation
—H,]__
hy = “H, h

t All the quantities of the slow shock are designated by the superscript or
subscript s.
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so that A, is positive over the evolutionary range, consequently the
slow shock conditions are expressed by replacing % in equations
(6.2.15) to (6.2.18) by —h,. In other words, replacing A, in the fast
shock conditions by — A, leads directly to the conditions for the slow
shock, for instance, the condition (S.3); becomes

X, (7s/hs) +sin 6

s Nisif%s) TS Y0
hs 1+ (7,/h,) sin 6, >0 (S.3),

and equation (6 2.15) becomes

_ —3yhgsinfy+ (1 —s,) £ VR,

28¢sin 0+ (y — 1) kg

h (S.4),

in which the (+) and the (—) superseript of 7, correspond to those of
the root of the right member, respectively, and R, (k,) is given by
R, (hy) = [(1—8,) — $yhysin 6,]2 — (24 8in O, + (y — 1) k) (hy— 2sin 6,) .
(6.2.25)

S

Since 7,/h, can be expressed in terms of X /A, as

s _  (Xolhs) —sin b,

hy  1—(X,/h,)sing,’
from (S.4), we have
in, < X 1
St h_ sin§,

Hence, if (S.4), is satisfied, then (S.3), is also satisfied. Thus we know
that the roles of the conditions (S.3), and (S.4),; correspond to those
of (S.4), and (S.3),.

In a way quite similar to that for the fast shock, we can easily
see that the slow shock may also be classified as one of the two cases
types-(1) and -(2), according as

8g=1—ysinf, (T.1),
8y<1—ysin26,, (T.2)g
respectively.
In the type-(1) shock the range of 4, is given by
0<h,<h, = 2sin6,, (6.2.26)

and only the positive branch (corresponding to 7}) is allowed. After
some calculations (49) it can be shown that as A, increases from zero
7 |hs decreases and becomes zero at k = h,. In the type-(2) shock
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the range of A, is given by
0<hy<h (6.2.27)

where iis >h,. However, the whole ranges given by (6.2.26) and
(6.2.27) are not necessarily evolutionary ; the range admissible from the
evolutionary conditions must be restricted to

0<hg<sinb,. (6.2.28)

This condition follows directly from the condition (E,.1) which states
that
H

i = Hyy(1—hgsinfy)>0.
Namely, the condition (6.2.28) is equivalent to the condition
H, >0. Since the negative branch corresponding to 7; has the
admissible range of &, between A, and 7»3, it cannot appear in the slow
shock. Moreover, it is not necessary to make a classification into the
types-(1) and -(2) since this has meaning only if admissible values of
h, range over h,<h, <fts. It can also be proved that, over the range
(6.2.28), the other evolutionary conditions (E.2), and (E.3), hold.
The proof, ¥,> cy, is based on the property of m, that (dm2/dh,)
is positive for h;<sinf, (50). In this sense the fluid flow is super-
slow ahead of the shock. Since, from the equation (6.2.18), it follows
directly that @, <b,,, equation (6.2.12b) leads to the validity of the
condition ,,<b,, provided that H, >0, i.e., that the condition
(6.2.28) is satisfied ; in other words, the condition (6.2.28) is equivalent
to the condition 7,y < by.
The remaining condition ¥, <c, is examined on the basis of
equation (6.2.23). Let us use the relation (50),
dm?  dm? [ G, ]
dpy  dh [(dpy/dh,)]|
As was already noted dm?/dh > 0 for h, < sin 6, while for the positive
branch we can obtain the expression

[@%] T [ By {2,00 sin 6, cos? 0°(7783) (gﬁ)z}_l

which proves that G} dm?/dp, > 0 and, consequently, that 7, <c,. In
this sense the flow is sub-slow behind the shock.

The behaviour of ¥, 7, #5, /b5, ¢, /b4, #4/b%0, and [S],/c, as functions
of A, is illustrated in Fig. 6.7 where c, is the specific heat at constant
volume.

G,



Slow magnetic shocks (s,=1)
All curves are type 1

\ (a)
A\ ,60° \75°
2:0

07
4

06
04
0-2

0 - he— 2 o
Fia. 6.7. Illustrating the dependence in a slow shock (T.1) of ¥,, 7,, ¥ 51/0% 15
Ce,1/%,15 U%,0/bn.0, @and [S]y/c, on the shock-strength parameter for several
values of 6, and for s, = 1. The non-evolutionary parts are shown by a
broken line and the evolutionary parts by a solid line (or by dotted lines for
¥, 1/b5,1) [Bazer and Ericson (49)]. Copyright (1959) by The University of
Chicago.
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Corresponding to Fig. 6.6, the relationship among the velocity
ratios ¥/byy, Ca/bz, and /by, is depicted in Fig. 6.8. As [H,]
increases from 0 to the critical value h;, #,/b,, starts from cy/b,,,
moves on the ordinate exceeding the point 1, and then decreases
again to 1; ¢, /b,, and ¥,,/b,, also increase at first; however, when

7 s

So=ig 6,=30°

Cso/bx° | «— Vzo /bro

Fiag. 6.8. The relationship between the velocities of flow and small
disturbances ahead of and behind a slow shock. Only the shaded region is
evolutionary. s, = $; 6, = 30°.

¥, exceeds b, i.e., enters the non-evolutionary region, cy/b,, tends
to decrease whereas ¥,,/b,, continues to increase and reaches unity.
We should note that the evolutionary region which is shaded is
topologically equivalent to that for the slow shock in Fig. 6.8.

6.3. LiMmiT SHOCKS

In the previous section we did not discuss limiting cases such as
the weak shocks, the purely transverse shocks obtained in the limit
0;—90°, and the shocks obtained in the limit ;—0°. The last case
is of especial interest since even in the limit 6,0, i.e., H4,—0,
the transverse component H, can be finite behind the fast shock
and similarly in the limit 6, >0, H, can be finite ahead of the slow
shock. These peculiar shocks are called the switch-on and the
switch-off shocks, respectively. In this section we discuss all these
limiting cases in detail.



6.3. LIMIT SHOCKS 239
() WEAK SHOCKS

In the weak limit A, < 1 the negative branch for the fast shock does

not exist since in this branch A, must be in a finite range A, <k, < 2,.
Assuming 6,# 0 and expanding 7, around &, = 0 we have

__l=r 1 [y=1)(1=r) (y—1)(14+8)—¥Se7],,
= S, 230[ hjt ..

sin% g, 1459— 28,7,

in which r; is given by the equation

1 1485+ V(1 +50)2—4syc0820, 3
r, 2cos?0, N

(It is interesting that the negative branch, if it is expanded around
h; = 0, gives the slow disturbance.)
A sufficient condition for the above expansion is

U
sind,” V(1 —sp)%+4s,sin%0 ’

Retaining only the leading terms, we can express all the jumps in
terms of 7, as follows:

hy = i‘“0°ﬁ,+... (6.3.1a)
r.cotanf, _
[v,), = —f—iQ:r—on,+... (6.3.1b)
/
myTy =, =cp+... (6.3.1c)
(0] = — oy + - (6.3.1d)
_ —1), yy—1)? 5 yly—1)sin?6, _ _
7 = yly 2,7 3 0.3 4y
e T [ S PN | 77 +0(@})
(6.3.1e)

Equation (6.3.1e) shows that the pressure jump is, up to terms of the
second order, the same as the corresponding expansion in a gas
shock [Appendix D, (S;.1)]; the fourth term represents the lowest
order contribution arising from the presence of the magnetic field.
From formulae (6.2.22) we have the entropy jump,

—1)(y+1 sin? 0 _
S =cv7(7 YTy '@ +0@), 6.3.1f
[ ]f 4 3 (]. _7,/)2 80 7]/ ("7/) ( )
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which reveals that the entropy jump is of third order. However, it
should be noted that this is not valid for §, = 0 [see Subsection (¢1)].

The state behind weak slow shocks may be obtained from that
behind weak fast shocks simply by replacing r;, by r, = b%)/c%,
¢io by ¢y, and h; by (— k) in equations (6.3.1).

The improper weak shock introduced by Bazer and Ericson is
excluded by the evolutionary condition which restricts the range of
hy to hy<sin 6.

(¢9) THE 0° LIMIT FAST SHOCKS (the switch-on
shock and the pure gas shock)

(a) The Type-(1) Fast Shock
The condition (T.1) reduces to

So=PBo=1 (T 1)y

which is equivalent to ag>b,,=b,.

The limiting process can be seen most easily from Fig. 6.5a. As 6,
approaches zero the vertical line h; = ﬁ,s 2sin6,/(y—1) moves to
the left, coinciding in the limit with the vertical axis h; = 0, while
7; may take any value in the range 0<7,<2/(y—1), since this is
compatible with the limit §,—0, h;—0 taken in the expression
(6.2.15). We thus see that in this limit the transverse magnetic field
is zero behind the shock as well as in front of the shock and
consequently it can be eliminated from the jump conditions and the
shock reduces to a pure gas shock. This is compatible with the
situation in simple waves where the state adjacent to a constant
state characterised by H, = 0 is that of pure sound wave. The
analytical expressions for jump relations in this limit (h;,— 0, 6,—0)
follow directly from equations (6.2.15) to (6.2.18). Noting that the
limit sin fy/h; may be finite, we have from equation (6.2.15) that

- 2(so—1)
1T (sin Oyfh)) 28— (y— 1)~

This equation determines sinf,/h, in terms of 7, which may be
assumed to be prescribed instead of %, as characterising the shock
strength, i.e.,

sinf, iso—l_l_y—l

= . (6.3.2a)
hy M5 So 2s,
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From equations (6.3.2a) and (6.2.16b) we obtain
_ 297
Y= "1 . 6.3.2b
T 2—(y-1)7, ( )
Similarly, equation (6.2.18) reduces to

U _ —_‘/Plﬁgﬂ = y;12 Vo _ 1 Vpo o _ { So }1/2
D)ya,/2

By (uHyNam) 7 by (uHWam) 1= (y—

(6.3.2¢)

By virtue of (T.1),,, equation (6.3.2¢c) implies that &/, >b.,, while
equation (6.3.2b) is identical with the Rankine—-Hugoniot relation
of ordinary hydrodynamics from which the supersonic and the
subsonic laws for 7., and ¥, result; that is, combining the relation
(T.1);,, we may state

i

A\

bo

b,

The jump of the transverse velocity component [v,] is of course zero.
Thus we see that the limit is a special case of pure gas shocks and
will be discussed in Subsection (:t).

a,=b, (6.3.2d)

5, <a,. (6.3.2¢)

N

(b) The Type-(2) Fast Shock
The condition (T.2) reduces to
o =PBo<l. (T-2)yim

This is equivalent to the condition ay < by=b,,.
The 0° curve in Fig. 6.5b shows that as 7, increases from zero, k,
increases up to

and then decreases, becoming zero for (7)., & value of 7, slightly less
than [2/(y—1)( = 3)]. So, for a finite value 7, < (7];)s, b, is finite so
that the transverse magnetic field is switched on across the shock.
For this range of 7, 0 <7;<(7,)r, the relation between 7, and A,
follows directly from equation (6.2.15) by taking the limit 6,0
without assuming that %, also approaches zero. Solving the relation
thus obtained with respect to &, we find

B} = 74201 —s0) = (y— 1) 7} (6.3.3a)
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while the condition A2 >0 implies
Al—sy) _ 2

y=1 y-1
Since, for any value of 6,, the value of 7, corresponding to the maxi-
mum compression is equal to 2/(y—1), it is easily shown that this
maximum value of 7, is still the same in the limit as 6,—~0. It can
also be proved that h, is zero for 7, in the range

2
(ﬁ/)cm VA 3/_——1 :

Therefore, as 7, increases beyond (7)., the switch-on shock changes
into a non-magnetic shock. In this non-magnetic limit we have
again the same shock relations as for pure gas shocks, equations
(6.3.2a,b,c); moreover, the relation (6.3.2e), i.e., #,; > b,,, is also valid.
Therefore this limit is a special case of pure gas shocks within the
hydromagnetic framework and will be discussed in Subsection (i¢1).
For the switch-on shock, the analytical expressions for ¥,, #,;, @,
etc., are easily obtained by taking the limit 6,—>0 in equations
(6.2.15) to (6.2.18).

From equations (6.3.3a) and (6.2.16b) we have

¥, = yij,(1+ (y— 1)7,/25,) (6.3.3b)

while equation (6.2.18) reduces to

0 <9 < (Ffderit =

5551/ bél = ’771/2 5550/%0 =1
and so
ol = bl (6.3.3¢)

0> byo (>a). (6.3.3d)

The flow is super-Alfvénic as well as supersonic in front, while
behind the shock the flow velocity is equal to the Alfvén speed.
Since there does not exist any switch-on simple wave,f we quite
naturally encounter the question of whether or not the switch-on
shock is evolutionary. In fact we can easily show that the switch-on
shock is not evolutionary. The relations (6.3.3) imply the five out-
going waves ¥, ¥, +¢;, ¥, +¢gy, ¥y +b,, which, respectively,

correspond to the five eigenvectors E'%, in Section 3.4. On the

t It can also be shown that in the weak limit the rise in entropy across a
switch-on shock is of the second order in the excess density or pressure
ratio (49).
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other hand, it is also obvious that the equations corresponding to
(3.4.11) are independent so that there exist seven boundary conditions.

However, as is seen from equation (6.3.3c), one of the phase
velocities is zero and therefore special care is needed for the discussion
of the evolutionary condition. This is discussed in Section 7.1.

(#1) PURE GAS LIMITS (6, = 6, = 0)

If the transverse components of magnetic field H,,, H,; vanish on
either side of a shock so that the magnetic field is in the direction
of the shock, the jump conditions reduce to ordinary gas dynamic
jump conditions and hence the shock is identical with the pure gas
shock provided perturbations are not involved. However, when
disturbances are incident upon them, transverse waves are induced
by the longitudinal magnetic field and consequently the evolutionary
conditions are different from those in gas dynamics. Putting H, = 0
in equation (6.2.8) leads to the representation of the matrix A

(9, a 0 0 0 0 0
a5, pp 0 0 0
t0 0 @, 0 0 0 0
0 0 0 S 0 0
0 ¥, 417PH“”
o0 o ;- /rH o 0 0
4mp
5 [
0 0 0 0 0 o 1y T
0 0 0 0 0 - 4—7";—P g 7,

Matrix (6.3.4) indicates that the eigenspace is divided into three
subspaces: one is the acoustic space composed of the eigenvectors
corresponding to the eigenvalues ¥, + @ and ¥,, while the other two
are Alfvénic subspaces composed of the eigenvectors corresponding
to the doubly degenerate eigenvalues &, + b,. Since V, U also takes an
irreducible form such as equation (6.3.4), the eigenvectors of A4,
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E&o EO and E‘4%) corresponding to the eigenvalues 7, + a, 7, and
¥, + b, respectively, constitute the space composed of subspaces of
the same kind. The vector [UU] belongs, of course, to the acoustic
subspace.

We now calculate the number of outgoing waves. However, in this
case there exists no definite inequality such as (4.3.21) between the
velocities @ and b,. We must thus investigate the shock conditions
further.

From the ordinary hydrodynamical shock conditions we have
(see Appendix D)

2
Py _ P_l__viﬂ' (6.3.5a)
Do Po—V'P1
and
% = (14+12) (0 ap)% — v (6.3.5b)
0
where

V= (y-1/ly+1).
Combining these equations leads to the relation

~2
(Eg_vz) (vizo) - l —vz '
1 QG

Hence, using the condition p, %, = p,¥,, We obtain
P15y = v?poU3e + (1 —v?)af py .
This equation may be written

A2 =12 A2+ (1—12)s, (6.3.6)
by using the Alfvén number 4 defined by
A=7v,/b,,
where
So = a2[b,.

On the other hand, from equation (6.3.5b) and the relation
a® = y(p/p), it follows at once that

8y = (aq/byy)? = (1 +12) A2 —12s,. (6.3.7)
Equations (6.3.6,7) determine the variation of ¥,,/b., and a,/b,, with
U40/bz0- In the weak limit, A2 is equal to s, and increases as the shock
strength increases; the behaviour of s, and A% as functions of 4} is
given by straight lines in the (A%, A%)-space starting from the points
(SgsSp). They are shown in Figs. 6.9a,b for sy>1 and s,<1,
respectively.
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§p>1
0~ 5= +vA) A3 - Vs,

A=v2d+(1- \12)3o

2
1 % Ad

Fi1c. 6.9a. The two straight lines s; and 4% as functions of A} taken as
abscissa (s,>1). A2 is in the evolutionary region s, >A4%>1, A%>s,.

s= (1 +vHAd-vis,

>

~ 5
Ay A

So 1

Fig. 6.9b. The case (s,<1). Since 1+12>1 and v2<1, the line s,, starting
at the point (s, s,), ranges over the three regions characterised by
(V40 <bgg, @y <byy), (Bpo<byg, @y>byy), and (¥,9>b,, @, >b,,) and the line 42
ranges over the three regions X, Y, and Z; X and Z are hatched, Y is given by
1<AZ< A2 [=(1—sp)/v2+8,], 1= A2>0.

The regions X and Z are evolutionary while the region Y is a non-evolutionary
region (44).
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For s;>1 we have
8§ >A%>1, Al>zsy>1,
ie.,
ay> Uy >by and Tpo>g>byg .

These inequalities imply the six outgoing waves with velocities 7,,,
Ty +ay, gy + by, 0,4 — b,y ,8incethe Alfvénic mode isdoubly degenerate ;
hence each of the three types of subspace is completely filled by
these outgoing waves and [U]. It is obvious also that the equations
corresponding to equation (3.4.11) are independent. The shock is
therefore evolutionary.

If sy<1 we have a different situation. As the shock strength
increases from zero, and thus A2 increases from s, s, also increases
from s, and exceeds unity. Thus at first we have a, <b,; but at a
critical shock strength a, exceeds b,,. On the other hand, the straight
line representing the behaviour of A% traverses the three regions
X, Y, and Z illustrated in Fig. 6.9b. In the region X we have the
inequalities

Al<s,, sg<di<1,
ie.,
min(a,,b,,) > ¥, , bo>0020a,,

which by virtue of the degeneracy of the Alfvén wave implies the
six outgoing waves with the velocities, 7,,, 9, +ay, ¥4 +b,1, Vo9 — oo
and consequently the shock is evolutionary. The region Z is character-
ised by the inequalities

Ay>Ay(>1), §>A42>1,
ie.,

V9> bgo> by Uy > Ty > by,

and consequently we have the six outgoing waves given by the
velocities ¥, ¥, +a,, ¥, + b,,, and the shock is again evolutionary.
However, in the region Y we have the inequalities,

Ag>A4,>1, 4,<1,
ie.,
bxo>5xo>bxo’ a1>bxl>5x1’

which imply the four outgoing waves with the velocities 9, ¥, +a,,
¥, +b,,, and hence the shock is not evolutionary. The discussion of
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this case which results from a piston motion will be presented in
Section 7.1.

(tv) 0° LIMIT SLOW SHOCK (the switch-off shock)

In the limit 6,— 0, all discontinuities of the slow shock vanish
producing a continuous transition. The limiting process is most
easily visualised with the aid of Fig. 6.7. In Fig. 6.7, for example,
the ranges of ¥, and of , decrease with decreasing 6,. As has already
been stated, for slow shocks it is unnecessary to make a distinction
between the type-(1) and the type-(2) shocks provided the evolution-
ary condition is taken into account.

In the limit 8, — 0, we have a switch-off shock in crossing which the
transverse magnetic field is switched off. The jump relations for
the switch-off shock can easily be seen by reading from Fig. 6.7 the
values for ¥,, 7,, etc., corresponding to A, equal to sin 6.

However, the switch-off shock is not evolutionary. This can be
seen as follows. The shock conditions corresponding to equation
(6.2.18) lead to the relation ¥, =b,, while for the evolutionary
region, 7, < ¢;and hence 7,; < min (a,, b,,); consequently, the outgoing
wave in front of the shock is only that with the velocity §,5—c/,
while behind the shock they have the velocities 9, +a,, ¥, +b,,,
and 7. Recalling that the Alfvén mode behind the shock is
degenerate, we see that the number of outgoing waves is five. The
evolutionary condition of the switch-off shock will be discussed
further in Section 7.1.

(v) 90° LIMIT OF FAST AND SLOW SHOCKS

As was discussed in Chapter 5, simple waves in this limit are
reducible to ordinary sound waves, and slow waves tend to contact
surfaces. For fast shocks we have relations closely analogous to
those of ordinary gas dynamics, while slow shocks tend to contact
discontinuities. A shock of this kind is called a perpendicular shock
in a sense that the magnetic field is perpendicular to the normal n to
the shock surface and such shocks have been investigated separately
by several authors (56,62). We now discuss the limit, 6, 90°.

(a) 90° Limits of Fast Shocks

From the condition (T.1), 90° limits of fast shocks are necessarily
of type-(1). The state behind the shocks is given by the following
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relations:
H
=h, de, H-gn (6.3.8a)
Nt ¥ oo~ Hy
1+ (y—1)72/4se} _
A Vi VT14%} o <oly—1 6.3.8b
1—(y _1 )77,/2 7 <2/(y—1) ( )
o=t g Ut @2 o, [ulS
“ Ny 0 7]}/2{1 —(y-1 "7//2}1/2 0 4mp,
(6.3.8¢)

— n /2
(] =[] = —b {15‘? (_21)’7’%/”5}/12/11 (q¥2—q7V2)  (6.3.8d)

[vj]=0. (6.3.8¢)

It follows from equation (6.3.8c) that as 7, increases, 7,, increases
also; consequently, ,, is larger than that value for 7, = 0, i.e.,

Tpo = bo(1 + 80)1/% = (b +a2)/2=c (=af). (6.3.8f)

It can also be proved that
Ty<ay.

Equation (6.3.8b) can be written in terms of p and = as follows:

y—1 y—1 A 2k (1= 7o)
_ Yi— %/ _ 9
("1 y+1"'o)P1 (0 ,y+17'1)1’0 - o
(6.3.8b")

where k = Hy/py = H,/[p,. If H,, = H,, = 0, this equation reduces to
the Rankine—Hugoniot relation.

Since it can be proved that dp/dr <0 and d?p/dr? < 0 the essential
feature of the curve in the (p,7)-space given by equation (6.3.8b’) is
the same as that of the Rankine-Hugoniot curve (3.6.4”). The
discussion of evolutionary conditions may be based on the following
8V and A where

- a -
-8
5P
ov,

y = 6.3.9
£Y 4 59 ( a)

-
/ 1,0
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and
-9, a 0 0 .
5 [~
a ¥, Ps - H
~ 4 v
q = i P . (6.3.9b)

0
[ © -
L 0 H)Hy 0 v,
The eigenvalues of U are #, + a* and #,, the last of which is doubly
degenerate. On the other hand, from the shock conditions we have

the inequalities ¥, >ag, 7, <af. Noting the degeneracy of the
eigenvalues 7, we may easily show that the shock is evolutionary.

(b) 90° Limits of Slow Shocks; Contact
Discontinuities
We easily find the relations
m;=0, [§]=0, [p*]=0.

The quantities [v3], [ps], and [S,] are not arbitrary but are given in
terms of A, for example,

(2_hs)h

— S __

Ts = 2sp+(y— 1)k,

This limit is a special case of contact discontinuities. A discussion of
general contact discontinuities will be given later.

6.4. TRANSVERSE SHOCKS AND
CoNTAcT DISCONTINUITIES

(¢) TRANSVERSE SHOCKS

In view of the analogy between equations (6.1.4°) to (6.1.7'),
(6.1.8") to (6.1.10’), and equations (4.3.1) to (4.3.13) we obtain

[v,] = / ZZ; [H,] (6.4.1a)

(p] = [7,] = [v,] = [H,] = [p] =0 (6.4.1b)

Dy =0y =b,=m/p (6.4.1c)
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while from equation (6.1.6b’) it follows that

z

......... H

HZO 5 0
Y

Wfl.-..:w

Fi1c. 6.10. The rotation
of a magnetic field in a
transverse shock.

[S]=0. (6.4.1d)

The velocity A is equal to the character-
istic root v, —b,, and so according to the
classification in Section 3.5 this discontin-
uity should be called an exceptional one.
Since in these relations the coordinate
system is so chosen that (H,> =0, the
condition [H,] =0 implies H, =—H,,
and consequently [H?] = 0 (cf., Fig. 6.10);
that is to say, the magnetic field and
the fluid velocity rotate through an
arbitrary angle, keeping their magnitude
constant. These equations may be

brought into the vector form
[Hl=eH)xn (6.4.2a)

[v] = T esgn (H,) /a% (H>xn, (6.4.2b)

where e denotes the jump strength and the — and + signs correspond
to the waves propagating towards the right and the left, respectively.
Since the magnetic field rotates across the shock, we cannot choose a
coordinate system in such a way that H,y = H,, = 0 (or H,; = H, = 0).
Hence the matrix 9 corresponding to equation (6.2.8) takes the form

o a 0 0 0 0 0
. p /
a VU, Ps 0 m Hz 0 ﬁ; H
0 0 o 0 0 0 0
0 0 0 v, - 4—:;0 H, 0 0
o _ [~ 5
A/ e 1y e o 0 0
0 0 0 0 0 7, - ﬁé
el e ~
0 ot 0 0 0 1y T o
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The above representation implies that no subspace exists and it can
easily be shown that the same situation is valid for the eigenspace
E@; in view of equations (6.4.1) [U] has the representation

- 0 .
0
0
[0]= 0 . (6.4.4)
0
Vuplam[H,)
[H,]

Since we have that ¥, is equal to b, we consequently have the six
outgoing waves with velocities b, +¢;;, b, + ¢, 2b,, b,, and b, —c,.
Since the equations corresponding to equation (3.4.11) are indepen-
dent, we may conclude that the transverse shock is evolutionary.
It should, however, be remarked that in the limit of 180° rotation of
magnetic field the situation is different. In this case we can refer
to the coordinate system where H,, = H,=0 and H, = —H, so
that the matrix 9 has the representation (6.2.8). Accordingly the
set of eigenvectors E® is divided into the two subspaces Q, and Q,
while [U] takes the form

_ 0 _
0
0
[O1=| Vpp/an[H,)] € Q. (6.4.5)
(H,]
0
0

However, the relation (6.4.1¢) implies the five outgoing waves which
belong to 2, and one outgoing transverse wave which belongs to
Q,. Corresponding to these outgoing waves equations (3.4.11) break
up into two sets; one of which is associated with Q, and is composed
of five independent equations for six unknowns, the amplitudes of the
five outgoing waves and of the disturbance of the shock velocity;
the other being associated with Q, and is composed of two equations
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for the unknown amplitude of one outgoing transverse wave. Hence,
from the former set of equations, we can conclude that the 180°
transverse wave is not evolutionary. However, it seems worth while
to note that the two equations in the latter system are not indepen-
dent butidentical. Namely, for the velocity ¢,, = 9,, = b, the number
of all eigenvectors £® which belong to Q,, and so correspond to the
eigenvalues ¥, +b, = 2b,, reduces to two; one of these eigenvectors
is the outgoing wave in the region x > 0 and the other is the incoming
wave in the region x < 0. However, both have the same representation

_ 0 -

S © o o

P
| —V4mpjp

and consequently the two equations associated with the sixth and
the seventh components of the above column vector are identical.
Physically speaking an incoming transverse disturbance with the
magnetic field polarised in a direction perpendicular to that of the
unperturbed magnetic field results uniquely in outgoing transverse
waves of the same amplitude and of the same polarisation.}

(#7) CONTACT DISCONTINUITIES

(a) H,#0
In view of the correspondence between equations (6.1.4') to
(6.1.10") and equations (4.3.1) to (4.3.13) we have

M =[H]=[p]=0 and m=pi,=0

where p and § may undergo jumps.

t As was noted in Section 3.4, the evolutionary condition on these limit
shocks with zero phase velocity such as the 180° Alfvén shock and the switch-
on and -off shocks needs special consideration, since there appears to be some
difference of opinion concerning their evolutionary and non-evolutionary
character. This will be discussed further in Section 7.1.
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As was already noted, in contrast to gas dynamic contact
discontinuities, the fluid velocity here is continuous. It can easily be
proved that contact discontinuities of this kind are evolutionary.

The matrix ¥ is given by equation (6.2.8) and, consequently, the
eigenspace is similarly divided into the two subspaces €; and €,
while [U] takes the form

- [Pl ]
lp]v,
(8]
[plvy
0
0
0

(0]

Since 7, is zero, the outgoing waves are given by the phase velocities
—bz0 —C10 —Cs0s bay, €11, and ¢y and the corresponding eigenvectors
and [U] are linearly independent. It is also obvious that the equations
(3.4.11) are independent.

(b) H,=0
In this case, besides the condition m = 0, i.e., ¥, = 0, we have
only one other condition

[p*] = [p+nrH?/87] =0,

and the tangential components of the flow velocity and of the
magnetic field may undergo any jump. In this sense contact
discontinuities of this kind can be referred to as shear flow discon-
tinuities and there are several closer resemblances to the gas dynamic
cases. In fact, since H, is zero, this configuration belongs to the
reducible case.

It should, however, be noted that for contact discontinuities of
this type equations (3.4.11) are not independent although they are
evolutionary.

Without loss of generality we may assume for 8V and U the
representation (6.3.9a) and (6.3.9b).
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Accordingly, V, U becomes

P 0 0 0
a
gvx P 0 0
v U= — |,
B(E+e+pep) pY, pe %’3 y
0 o o [
_ po
while [U] takes the form
(p]
- [plv,
[0] = S (6.4.6)
[pm + pe + zpY ]
[(H,]

Since @, is equal to zero, there exist two outgoing waves with phase
velocities af and —af and two incoming waves with the velocities
a¥ and —a}. The eigenvectors of A, E*) and E corresponding
to the eigenvalues a* and —a*, respectively, can be found from
equations (6.3.9b) as follows:

a P
B — V.U ta* N p(v, + a*)
’ 0 1pv2+ pe+p* £ pa* v, +p,

Vu/4mp H, H,

(6.4.7)

Hence equation (3.4.11) reduces to the following equation for the

small amplitudes 8a{.} and 8ald, of the outgoing waves and for 8A:

Sall) a B(H — 8a) a¥ ES) + SNT]

out
= —8a) a} E{7 +8a{ a} E* (6.4.8)
where 8a{® and 8a{!’ denote the small amplitudes of the incoming
waves.
However, the equations in (6.4.8) are not independent. In fact,
the first and the last equations take the forms

P18041 — pg 8Tz = 0
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and
H, 60, — Hy80,y=0
where
80, =a¥ all) +af dall) + 8A
and

5 — % S (0) 4 g% Sp(0)
8V, 0=ag 8al%) +af 62 +6A.

Hence, if p,/H, # po/H,, we immediately have the result that

8, =80,=0. (6.4.9)
By means of this relation the second equation of (6.4.8) reduces to
praf¥(8al)—3al) + poaf2(5al% —8a®) = 0. (6.4.10)

On the other hand, the third equation of (6.4.8) may be written in
the form

2
[851(%0’ + pe + pm)] + p*[67,]

+v, [p1af? (3all) — Sail’) + po ag®(Sag), — Saf’)] = 0.

This equation is therefore satisfied automatically if the other
three equations are satisfied. From equations (6.4.9) and (6.4.10) we
can uniquely determine 3al), 8!, and 8.

If Hy/p, = Hy/p,, the fourth equation of (6.4.8) becomes identical
with the first equation and 8a(l), 8a%), and 8\ are also determined
uniquely.

Thus the contact discontinuity is evolutionary.



7 { INTERACTION OF
HYDROMAGNETIC
WAVES

7.1. FuRTHER CONSIDERATIONS ON THE
EvoLuTioNary CONDITION

WHEN BOTH BOUNDARY and initial conditions are specified inter-
actions will take place between the hydromagnetic simple waves,
shocks, and contact discontinuities just considered. This problem
may be resolved and a solution obtained on the basis of the general
theory presented in Chapter 3. If the evolutionary condition is not
taken into account, the unique existence of a solution is lost as may
easily be seen by a simple example. On the other hand, however,
there arises the difficulty that for certain boundary conditions no
solution exists at all when all non-evolutionary solutions are strictly
excluded. We demonstrate this by the following simple example
(72,74).

Let us consider an ideally conducting piston moving with constant
velocity into a conducting fluid at rest. We refer to the laboratory
system of coordinates and assume that the magnetic field lies in the
x-direction, say H,>0, H, = H, = 0, and that the piston moves along
the magnetic field in the direction of positive x. We now easily see
that a gas shock of the type studied in Section 6.3 (45, 75) develops
in the positive a-direction. All the jump conditions are given by
equation (3.6.14) and the equations in Appendix D.

Assuming y = 5/3 we have

X = 2u/3+V4u[9+a}
pilpo = A|(X—w) (7.1.1)
P1/Po = 1+ 5ul/3a}
[ l=vyH=u

where u > 0 is the piston velocity. However, Fig. 6.2 shows that the
shock thus produced is non-evolutionary for s,<1 and 1< A43< A2,

256
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ie., .
[AL)\?
1< [—) <(4—3s). (7.1.2)
bxo
Inserting equations (7.1.1) into the inequality (7.1.2) we have
3(b30 —a5) 3(b2o —at)

ab, <u<m . (7.1.3)
Namely, if the piston velocity is in the range given by the above
inequality, the resulting pure gas shock is non-evolutionary, that is
to say, there does not exist any evolutionary solution. An alternative
non-evolutionary solution is found to be the combination of a
switch-on and a switch-off shock. A transverse magnetic field is first
produced by the switch-on shock after which a switch-off shock follows
cancelling the transverse magnetic field so produced. The boundary
conditions to be satisfied are given by the equations

[vx] = [vx]f'l_ [vx]s =u (7'1'43')
[v,] =), +[v,], =0 (7.1.4b)
(H)]=[H]+[H],=0 (7.1.4¢)

where the subscripts f and s denote the jumps across the switch-on
and switch-off shocks, respectively, and which are given by the
transformation (6.1.15a), equations (6.3.3), and the result in Section
6.3 (47). [See also Appendix D, equations (Sw) and (S;).] Denoting
the quantities in front of the switch-on shock, in between the switch-
on and switch-off shocks, and behind the switch-off shock by the
subscripts 0, 1, and 2, respectively, we see that they take the forms

(2] = bgoln}® —m7*/?] (7.1.5a)
[22)s = (As/m5) ba (7.1.5b)
H,
h, = sinf (= ——”L—) 7.1.6a
8 1 \/H_i-l-—[{lz/l ( )
H,

h, = tan@ (= —”1) 7.1.6b

f 1 H, ( )
[oy); = bz /2 Ay (7.1.7a)
[vy)s = —byomy*/2tand,. (7.1.7b)

From equations (7.1.6) and (7.1.7) it follows immediately that
the conditions (7.1.4b,c) are satisfied automatically. Since equation
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(6.3.3a) [or Appendix D, equation (Sw.1)] determines k; in terms of
7;, and from equations (7.1.6) h,, and consequently 7,, are determined
by h;, all the jumps are then given in terms of n;, whilst the condition
(7.1.4a) serves to determine 7,. On the other hand, from equation
(6.3.3c) [or Appendix D, equation (Sw.1)], we have that o, = b,,,
and the evolutionary condition for the slow shock ¥, <b,,, h,<sin8,
implies that #; = b,,, thus the two shock velocities A, and A, must be
equal. We thus have the switch-on and switch-off shocks proceeding
with the same velocity A, = A, = A.

The shock velocity A is most easily obtained as follows. The two
shocks may be regarded as one shock on both sides of which the
transverse magnetic field is equal to zero and therefore the shock
relations across this double layer are identical with those of pure
gas shocks. Accordingly, X is again given by equation (7.1.1). We
have thus obtained two non-evolutionary shocks, one being the pure
gas shock and the other the double-layer switch-on and switch-off
shock. It should be remarked, however, that these shocks are
entirely different in nature with respect to the continuous dependence
on the boundary conditions, i.e., if the direction of the piston motion
deviates slightly from the x-direction then the pure gas shock goes
over to a non-evolutionary slow shock and consequently still remains
non-evolutionary. This is seen by noting the relations |¥,,|<b,,,
| T0] > by (cf., Fig. 6.3b), the former of which implies that the shock is
a limit of slow shocks whilst the latter indicates that those slow
shocks are non-evolutionary. The double-layer shock, however, splits
into two evolutionary fast and slow shocks, since the switch-on and
switch-off shocks are limits of evolutionary fast and slow shocks,
respectively.

In this book the non-evolutionary limit shocks which are limits
of evolutionary shocks will be called weakly evolutionary.t In a
neighbourhood of a weakly evolutionary discontinuity, evolutionary
solutions exist densely. When a weakly evolutionary solution is
obtained in the subsequent discussions, it should be remembered
that we are discussing (strongly) evolutionary solutions which can
be obtained from the solution by an infinitesimal change of boundary
conditions.

However, the non-evolutionary solutions which are not even
weakly evolutionary (such as the pure gas shock discussed here)

+ As was pointed out in Section 3.4, there is the claim that weakly evolu-
tionary shocks, such as the 180° Alfvén shock, are truly evolutionary.



7.2 THE PISTON PROBLEM 259

will be completely excluded from consideration since even in the
neighbourhood of such solutions there exist no evolutionary solutions.
In the subsequent discussions, however, the question of uniqueness
of a solution involving evolutionary and non-evolutionary dis-
continuities will not be considered.

7.2. THE PisToN PROBLEM

We first note the difficulty of the hydromagnetic piston problem
by remarking that, in contrast to the ordinary gas dynamic case,
the continuous flows produced by the piston motion are not always
simple waves. For example, in a receding piston problem, the simple
wave region adjacent to the constant state does not necessarily
reach to the piston wall and there may exist a non-simple region
between the piston wall and the simple wave. Moreover, since the
Riemann invariants are not constant along characteristics, it is
difficult to determine the boundary between the simple and the
non-simple wave. In order to surmount this difficulty we shall
consider a piston moving with constant velocity. The solutions in
this case are then composed of shocks and centred rarefaction waves.

We now show that among the many combinations of these
elementary waves the configuration containing two shocks of the
same type (both fast or both slow) is to be excluded since the rear
wave overtakes the front wave if they follow one another. For
example, if two slow waves follow one another, we have from the
evolutionary condition that

" -
B <cy and e >cy

where the subscript 1 denotes the region between the front and the
rear shock waves and the quantities associated with the front and
the rear waves are denoted by the superscripts “fr”’ and “re”,
respectively.
The above inequalities immediately imply that
o5 > 05,
ie.,

| Are| > | Afr]

namely, that the rear wave overtakes the front wave.
On the other hand, if there exist three shock waves of different
kinds, it is obvious that they must be in the following order, the fast
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shock followed by the transverse shock and then, finally, by the
slow shock.

Calling the boundary between a simple wave and a region of
constant state a weak discontinuity we see, similarly, that a shock
wave also overtakes a weak discontinuity of the same or of a slower
type and a weak discontinuity overtakes a shock or a weak discon-
tinuity of slower type.

Using the definition of a weak discontinuity we obtain the
following configuration.

A fast wave (shock or simple wave) followed by a transverse shock
followed, finally, by a slow wave (shock or simple wave).

We next discuss the boundary condition at the piston which we
assume to be an ideal conductor. Let the z-axis be directed along
the normal to the piston surface and assume H, # 0, we then have the
boundary condition

v=1u (7.2.1)

where u is the piston velocity.

The x-component of the condition (7.2.1) is obvious.

The conditions for the remaining components follow from the
condition that in the coordinate system moving with a metallic
boundary the transverse component of the electric field is continuous
across the boundary. This follows directly from the Maxwell
equation (1.8.1b). Hence, at the piston wall, we have

E,=0 and E, =0

in which the prime indicates the value in the coordinate system
moving with the piston. On the other hand, equation (4.1.3) implies
that

E'=—';—Lv’><H

and consequently we find

=u,

» and v, =1u

Yy z"

We also found in Section 5.2 that in a sufficiently strong slow
rarefaction wave cavitation takes place. In this case the transverse
component of the electric field has to be continuous at the boundary
between the vacuum and the fluid, i.e., the following boundary
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conditions should be satisfied :

p=0 (7.2.2a)
H,(u,—v,)—H/(u,—v,) =0 (7.2.2b)
H (u,—v,)— H(u,—v,) =0. (7.2.2¢)

The piston problem in magnetohydrodynamics has been investi-
gated by several authors (45,47,68,74,75) for a number of special
cases. Let us first discuss the following case treated by Polovin and
Akhiezer (45).

(i) The piston velocity, the magnetic field and the normal to the
piston surface lie in a single plane, say, the x,y-plane, and
consequently v, and H, will vanish not only in the unperturbed
medium but also in all the resultant waves.

(ii) The unperturbed magnetic field is small, i.e., s> 1 (H,#0)
where the subscript 0 denotes the value in the unperturbed
medium which will be assumed to be at rest (v, = 0).

Under assumption (i), the only possible wave, besides the magneto-
acoustic shocks and simple waves, is the 180° Alfvén wave which may
be assumed to be weakly evolutionary. The direction of the piston
motion will be taken to be the positive direction of the z-axis. Since
the shocks proceed ahead of the piston in this coordinate system,
the shock velocities A are positive and #, and m are necessarily
negative (the same evolutionary conditions are of course valid for
|9,]). If H, is negative, all the shock relations obtained in Section
6.3 are valid and are unchanged in this coordinate system. We shall,
however, assume that H, > 0; then, by means of the transformations
(6.1.15a), the value of [v,] should be replaced by its negative value
provided that H, has the same configuration as was assumed there.
For example, across the magnetoacoustic shocks H, is positive,
which condition may be achieved by 6 = —6 in Appendix D.

Employing the notations introduced earlier in Chapter 3, we
denote, for any quantity @,

the jump across a fast shock by AQ
the jump across a slow shock by AQ
the jump across a fast simple wave by §,Q
the jump across a slow simple wave by 8,

the jump across a 180° Alfvén shock by A, Q.
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Then, if cavitation does not occur, from equation (7.2.1) we have
2(Av,, 8;v,, Ayv,, Agv,, 8,0,) = u, (7.2.3a)
Z(A vy, 8,v, A v, Agvy, 8,0,) = u, (7.2.3b)

STy U8y
where the summation should be extended over the possible combina-
tions of the arguments. Similarly, if cavitation does occur, equation
(7.2.2b) becomes

H,Z(Av,, 8,v,, Ay v, Ayv,, 8,v,)

xr Usx
—-H, XA, 8,v,, Ayv, Ay, 8;v) = Hyu,—Hyu,. (7.2.4)
Let us now investigate the changes of quantities across these

shocks and centred rarefaction waves.

(¢) CENTRED RAREFACTION WAVES

The changes across rarefaction waves are given by equations
(5.2.10a’), (5.2.14), and (5.2.15), or (5.2.2') and (5.2.4") (see also
Appendix D).

Under assumption (ii) these expressions may be considerably
simplified. Expansion in terms of 5%/a? = s~! in the definitions of
¢; and ¢, results in the expressions

o _G % Bkl (B = s/cos?0) (7.2.5a)
~ a2 a2 - - -
2
a+—15%—15.§+zb§/a2<1. (7.2.5b)

Since «_ decreases across a slow wave, if equation (7.2.5a) is satisfied
ahead of the slow wave, then it holds over the entire slow wave,
although assumption (ii) is violated since the sound velocity @ may
become small. Similarly, if equation (7.2.5b) is fulfilled ahead of the
fast wave, it is satisfied over the entire fast wave.

(a) The Centred Slow Rarefaction Wave

Solutions satisfying the condition (7.2.5a) correspond to curves in
the (a, B)-plane which lie close to the ordinate «_ = 0. Since equation
(5.2.11) may be approximated by dB/da = y*/a?, the family of curves
becomes

a_my*/[(y*+1)By—B] (7.2.6)

where B is the parameter specifying the value of B ahead of the slow
waves (see Fig. 7.1). Introducing equation (7.2.6) into equations
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(5.2.15) and (5.2.10a"), we can obtain 8;v,, 8,v,, and §,H,, etc., in
terms of the parameter B.

However, in the piston problem, the states ahead of slow waves do
not necessarily satisfy the condition (7.2.5a) since they may be the
states behind fast or Alfvén waves.

z = loc_ —1|-);é-y'foz_2|oc-—1|_(1w‘11 _

B=1foc

01 02 03 04 05 06 07 08 09 10

— >
F1c. 7.1. The curve of B versus « for the slow simple wave.
Another extremum case is specified by the condition
l1—a ;=6 ,<1, Bo~1, (7.2.7)

which implies that the condition {_ < 1 holds over the entire wave since
the integral curve in the («, 8)-plane lies close to the line «_ =1 (see
Fig. 7.1).

Noting that under these conditions equation (5.2.11) can be written

as
d _
we have
Br1—[y/ly=1)]Er[E75 + (y[y—1) E_. (7.2.8)

By means of equation (7.2.8), 8,v,, 8,v,, and 8, H, may be expressed
in terms of B.
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(b) The Centred Fast Rarefaction Wave
Under the condition (7.2.5b), equation (5.2.11) can be integrated
to give
B= 1+Bo(f+/§+o)7‘—(')’/‘)’_ 1§, (7.2.9)
from which the expressions for 8,v,, §;v,, and §,H, follow, also
expressed in terms of 8. The integral curve corresponding to equation
(7.2.9) may be easily visualised by means of equation (7.2.8).

(¢¢) FAST AND SLOW SHOCKS

(a) 180° Alfvén Shock
The jumps in the velocity and the magnetic field are given by

Ayv, = 2b, and A H,=—-2H, (7.2.10)

where the index O refers to the region ahead of the shock. Other
quantities are continuous.

(b) Fast Shock

Since s,> 1, the fast shock is of type-(1) and consequently we
must consider the positive branch of the equation.

Moreover, %, is smaller than ﬁ, which, for y = 5/3, is equal to
3sinf, and thus we may assume that s,>h, By virtue of these
conditions, it follows easily from equation (6.2.15) or Appendix D,
(S§V.1), that

hy
sin §,

I (1-39) (7.2.11a)

where 6 is a quantity of order 1/s,.

Similarly, equation (S{!’.2a) reduces to
— 2yh,

77 2sin6y— (y—1)k,

Combining these equations we obtain

+0(1/s,). (7.2.11b)

o
7=
T 2—(y-D7y
or
&=P1_V2Po
Do Po—VP1

which is identical with the jump relation in the case of a pure gas
shock. Using equations (S{!'.2) and equation (7.2.11a), we also
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have that
g _y=1 B
8 = sylcos 00(1 5 s 00)
or
E) 1cos26,(1 y=1
= sy1lcos ——2—1;,

It is easy to see that to the lowest order with respect to 1/s,, the
jump in v, is identical with that in a pure gas shock, i.e.,

T e
- AT

B

80

2
A, = [p] (pl+—v2)p£ (see Appendix D). (7.2.11¢)

The jump in v, may be calculated in the same way when we find

A/_ 3/2bf A/Lsin(io. (7.2.11d)
Y
(c) Slow Shock

Since the magnetic field strength decreases across a slow shock,
under assumption (ii) the slow shock must be weak. Noting that
R+(h)~s,— 1+ 2sin? 90-2—;—°’hssin 8, ,
8o>1 [cf., equation (8,.6) in Appendix D], we see that equation (S,.1)
is a quadratic algebraic equation for 4, in terms of 7, from which, for
the sufficiently small 7,, we find

HyO_Hyl = Hyo(l _‘/1 - 2“(2);73/1)50)

By virtue of the evolutionary condition implying that H,, and H,,
have the same sign, we ﬁnally obtain

|AH,| = —V1—2a27,/b%)) (7.2.12a)
Introducing equation (7.2.12&) into equations (Ss.2, 3,4) results in
A;p=a2Ap (7.2.12b)
Agv, = b7 (7.2.12¢)

and
A,v, = byo(1—1—2a37,[b%). (7.2.12d)



266 7 ¢ INTERACTION OF HYDROMAGNETIC WAVES

Let us now discuss the piston problem given by the boundary
conditions (7.2.3) or (7.2.4). We first consider under what values of
the piston velocity a single elementary wave or a combination of a
magnetoacoustic wave and an Alfvén shock can emerge.

R, A€ Slow Rarefaction Wave (with or
without cavitation)

From equations (7.2.3) we have

Uy = 83 Vg
and

u, = 8,0,
Since 8,v, and 8,v, are given in terms of the parameter g,, the
above equations determine a curve in the (u,, u,)-plane (see Fig. 7.2).
If the piston has a velocity given by a point on the curve, then only

the centred slow wave appears.
From equations (R.2a,b) in Appendix D, it follows that

u, <0, u,>0,
and
du, A/ l—a_,
i /. . 7.2.13
du, ~ N (1=a,fy)a (7:219)

In view of equation (7.2.6) the above equation implies that
du,/du, approaches infinity for B, = B, decreases monotonically
as B, decreases, and then becomes approximately equal to «//30, for
B =0.

We thus obtain the curve &, in Fig. 7.2. If cavitation occurs, the
boundary condition (7.2.4) must be employed and we have

Hyy(u, — 8 v,) — Hy(u, — 8" v,) = 0 (pr=B1=0) (7.2.14)

where 8{*") v, and 8{°*" v, are determined by (R.2a,b) with the upper
and the lower limit, 0 and B, respectively, and H,, is given by (R.3)
for B, = 0. In view of equation (7.2.6) these values may be easily
calculated as follows:

y 1 Y
x1¥y By’ H, ~a, ‘/SﬂPo/V

Sécav) VR bzof (7)’ S.SJCW) VR —a, g('}’)

f(5/3)~2-78, 9(5/3)~3-67 (see refs. (45,79)).
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Equation (7.2.14) corresponds to the straight line (%, ¥ in Fig. 7.2)
with the slope given by v2/ya,/b,, which joins the curve determined

F1c. 7.2. Wave patterns in piston motion  (45).

by equation (7.2.13). Since, for 8, = 0, equation (7.2.13) implies
that du,/du, = ay/b,,, the straight line and the curve do not join
smoothly.
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AR, AR, € : Slow Rarefaction Wave and

Alfvén Shock (with and without cavitation)

If u, <0 and u, > 0, there is a single rarefaction wave which implies
that 8;v, <0 cannot satisfy the boundary condition. In this case
we have the combination of an Alfvén shock and a slow rarefaction
wave ZX,. The boundary condition takes the form

u, = 8,0, <0
u, = A v, +8,v, = 2b,,+8,v,.

Because of the Alfvén shock, the transverse component of the
magnetic field ahead of the slow wave is negative and hence §,v,
becomes positive and so the boundary condition can be satisfied
provided w, > 2b,,. The curve of the piston motion in the (u,,u,)-
plane starts from the point P(u, = 0,u, = 2b,,) and goes to infinity

in the section u, <0, u,>0. Since §;v,/2b,,~ O(sy), the shape of the
curve is very similar to the curve %, — %, %.

A, Fast Rarefaction Wave
The boundary conditions take the form

u, = 8;v,
u, = 8,7,
which implies that u, <0, u,>0. These equations may be given in
the differential form
du, [ _ea-l
du, Y e

In view of equation (7.2.9), we easily see that

| duy[du, |~ O(1] {By) <1

unless o, f; becomes close to unity, i.e., unless the maximum
rarefaction at which du,/du, diverges to — oo occurs. The value of 8,
for the maximum rarefaction can be determined by equation (7.2.9).
Taking this and the condition o,,8, = 1 as the upper limit of the
integrals, (R.2) determines u, and u, for the maximum rarefaction.
The point in the (u,, u,)-plane corresponding to the maximum rarefac-
tion will be denoted by @.

The curve of the piston motion, starting from the origin, goes in the
negative u,-direction with a small slope of order (1 Vs,) and, in the
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neighbourhood of the point @, it becomes very steep, ending vertically
at @ (see %, in Fig. 7.2).

R, : Fast Rarefaction Wave and Alfvén Shock
The boundary conditions become

u, = 8,v,

u, = 8,v,+A v, = 8,v,+2b,
where the subscript 1 refers to the state behind the fast wave. Since
8,v, and §,v, take the same values as those in %, the curve of piston
motion in the (u,, u,)-plane is shifted upward by 2b,, from the previous
one for #,. The value of b,, is obviously zero for the maximum
rarefaction and is equal to b, for B, = B, i.e., for §,v, = §,v, = 0.
Its analytical expression can also be given in terms of the parameter
£,, by equation (7.2.9). The curve is plotted in Fig. 7.2, as %,
starting from @), the point of the maximum rarefaction, and ending at
P, the point (u, = 0,u, = 2b,).

R,, X, : The Pure Gas Rarefaction Wave
(with and without cavitation)

If the piston recedes beyond the maximum rarefaction limit
performed by %, or #,%/, we then have a pure gas rarefaction
proceeding along the vertical line «_ = 1 in Fig. 5.3.

The boundary conditions are given by

u, = 8,v,

Uy = Uy
where u,, is the value of u, for the maximum rarefaction by %, or
X, €. 1f the value |u,| exceeds some critical value, then cavitation
takes place. The critical values of u, and u, will be denoted by

Uy and u,,, corresponding to the point R in the (u,,u,)-plane. The
curve starts from ¢ passing through R to —oo0.

&;: Fast Shock
The boundary conditions

u, =A7Av, = A/ 950
1% = (2] P1+V po

u, = A, = — A/SZO (7,32 b1, sin 6,T, < 0
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imply that the curve of piston motion, starting at the origin, decreases
by a small amount of order 1/y/s,. As the shock intensity increases,
[p] becomes large and, in the limit of maximum compression, u,
becomes infinite whilst u, tends to zero to the order 1 Npl. Thus,
we obtain the curve & in Fig. 7.2.

o : Fast Shock and Alfvén Shock
The boundary conditions are
u, =AM, >0
uy = 8;v,+2b,,.

Hence the relation to ] is closely analogous to that between %,/
and %,.

The value of b,, is given by equation (7.2.11a). Since h,<%,, we see
that the curve of piston motion joining the curve %, .o/ at P tends to
some limit line parallel to the u,-axis, as u, increases to infinity.

Moreover, A, is of order 1, whilst A,v, is of order 1 Vs, and hence

u,, is always positive. In view of these relations we may draw the
curve &« in Fig. 7.2.

&,: Slow Shock
From the boundary conditions

Uy = By0, = by )
u, = Ay, = byo(1 —V1—2a27,/b2;)
we may eliminate 7, to obtain the following equation:
Uy + bgguy(u, —2b,)/2a3 = 0. (7.2.15)

This represents a quadratic curve which starts from the origin and
turns round in the section u, >0, u, >0, finally ending at the point
P(0,2b,,) where it joins the curve &%, and, at the same time, also
A and /. On the other hand, the boundary condition implies
that u, <b,, and hence only the lower part of this curve corresponds
to <.

& S,: Alfvén Shock and Slow Shock
The boundary conditions are

u, = Agv,
u, = 2b,,+ A0,
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where A, v, is the same as for & and A, v, is given by

Ajv, = = by (1 =V1 —2ag 7,[b%)) [see equation (6.1.15¢)].
Since b, = b,,, eliminating 7, again results in equation (7.2.15) but
with the restriction u, > b,,. Namely, the remaining upper half of the
curve for equation (7.2.15) corresponds to &/.%.

In Fig. 7.2 all of the curves of the piston motion, %Z,, £, €, AX,,
ARC, Ry, Ry A, Ry R, €, 5, S, &, and A, are plotted as solid
lines. From these lines we may easily construct the regions corre-
sponding to combinations of these waves. For example, if u, is
increased from the curve &}, then we have the combination of &%,
since this state has to tend to <, as u_ is decreased. Thus we see that
in Fig. 7.2, the region bounded by & and ¥, is &, whilst the region
bounded by .« and 4, is &4, and that these two regions
have to be in contact with each other along a boundary line. In the
same way the regions %, S, % AS,, SR, R R, Ky, AR, and
S, AR, are easily determined. Since cavitation takes place for large
amplitude slow waves, the regions & %,, %, %,, %, A X, and &, AR,
have the boundaries where cavitation takes place and which deter-
mine .the regions &%, €, X, RC, X ARE, and S, AXE. All of
these boundaries are shown as broken lines in Fig. 7.2, their analytical
expressions and their detailed behaviour have been studied by
Polovin (45,75). The relation between the appearance of the
Alfvén wave and the direction of the piston motion may be seen
intuitively (44, 75).

Since the magnetic field lines must remain fixed to the piston, as
the piston moves in the negative y-direction they are deformed such
that H,, at the piston surface increases (see Fig. 7.3a). When the
piston moves in the positive y-direction (u,>0) they are deformed
such that H,, decreases (see Fig. 7.3c). At a critical piston velocity
H,, vanishes and then the transverse magnetic field at the piston
reverses its direction (H,, <0); this necessarily leads to the appear-
ance of the 180° Alfvén wave since H,, is positive (see Fig. 7.3b). So
far we have assumed that sy>1, i.e., that H, and H,, are small
Bazer (47) thoroughly investigated the case in which H,; = 0, u, = 0
but where H, is arbitrary. We now discuss this case very briefly.

(i) so=PBop>1 (H,>0)
In this case the pure gas shock which is the 0° limit of the fast
shock proceeds ahead [see Section 6.3(ii)(a)]. Let us first assume
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that cavitation does not occur, then the boundary condition takes
the form
u,=0=A47v,+X

u, =B,v,(=0)+Y

in which X and Y are the changes across a wave which are to be
determined. Since A;jv,>0 and A v, and A v, are positive, X must

vl | N
l Y P Y H

P

(a) (b) (c)

Fic. 7.3. The relationship between the appearance of the Alfvén wave
and the direction of the piston motion (44, 75).

be the change due to the rarefaction wave. However, behind the
pure gas shock H, = 0, and hence a fast rarefaction wave cannot
occur, whilst for a pure gas rarefaction wave we have that §,v, = 0.
Therefore we obtain the switch-on slow rarefaction wave which will
be considered as the limit H,,—0+. Let us denote the states behind
the gas shock and behind the slow rarefaction wave by the subscripts
1 and 2, respectively. Then, if u,<0, the latter equation in the
boundary conditions determines §, in terms of 8; and u,. Introducing
this into the former equation determines B, in terms of u, and the
quantities in the undisturbed state. If|u,|is so large that it exceeds
a critical value, then B, must become zero and cavitation will take
place. In this case A,v,, and consequently B,, also exceed some
critical value.

If u, >0, then the switch-on slow wave may be considered as the
limit H,,—>0— so that §,v,>0. It can be proved (47) that Y, , the
critical value of Y (or n) corresponding to the critical 8 beyond which
cavitation is produced, is always greater than Y_;, determined from
equations (Sw.0a,b) in Appendix D provided that s,> 0-05.

(ii) sy =By<1
We still have the same pattern , %, provided that

Ny > Teris, = %2 [see equation (6.3.3a)].
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However, if 1, <., we then have the switch-on shock which will
be considered as the limit H,,—>0+ and which must be followed by
a rarefaction wave (fast or slow). Exhausting all possible combina-
tions leads to the result that the boundary condition can be satisfied
by the slow rarefaction wave,

0=A,,v,+6,v,

u, = Ay, v, +8,0,

By=pylex))

so=0-015625 T ./31 vs. g curves

00 02 03 04 O5 06 07 08 09 0

Fic. 7.4. Graphs of B, versus «, at the head of rarefaction waves which
follow switch-on shocks for different values of s, [Bazer (47)]. Copyright (1958)
by The University of Chicago.

where, from equations (Sw.3,4) of Appendix D, it follows that
Aaw Uy = b:co [7]}/2 - 771_1/2]
ASW vy = _bzo 7771/2 h/ 5 h/ >0

whilst from equation (Sw.1) we have

_ y—1_
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Frc. 7.5. Graph of Y, = p,/p, versus u,/a, for several values of s, [Bazer (47)].
Copyright (1958) by The University of Chicago.
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Fic. 7.6a. The transverse magnetic field produced versus u,/b, [Bazer (47)].
Copyright by The University of Chicago.
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These relations determine 7, in terms of u,, b,,, and s, provided that
u, <0.

If w,>0, we may consider the switch-on shock as the limit
H,—0—. Since Y, is less than Y, the combination Sw-Z, does
not lead to cavitation. This can be seen intuitively as follows.
Across Sw the density jump, and consequently A, v,,is not sufficiently

large to cause 8,v, to be large enough to produce cavitation.

Fls

L

uy, /ao —_

Fic. 7.6b. The transverse magnetic field produced versus u,/a, [Bazer (47)].
Copyright (1958) by The University of Chicago.

The results are presented most conveniently in graphical form in
Figs. 7.4 and 7.5. Figure 7.6 shows that a considerable transverse
magnetic field can be produced if H, is large. If in this simple
example we refer to the coordinate system in which the piston is at
rest, then v, takes the value —wu,, and we have the situation
resulting from an initial shear flow discontinuityt which is a
special case of Riemann’s problem in magnetohydrodynamics.

t Bazer (47) actually obtained the solution for this case and the piston
motion given here is derived from his result by means of a Galilean trans-
formation.
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7.3. RIEMANN’S PROBLEM

We now consider the hydromagnetic Riemann’s problem where
the initial condition is given as in equation (3.5.10). Let us first
assume that the components of the magnetic field in the directions
normal and transverse to the wave front are always finite, i.e.,
H,+#0 (H2+ H})Y2+#0. According to the result obtained in Section
3.5, the initial discontinuity breaks up into several waves: fast and
slow shocks, fast and slow rarefaction waves, transverse shocks, and
a contact discontinuity. As was noted in the previous section, these
waves must proceed in the order: the fast wave (shock or simple
wave), the Alfvén wave, and the slow wave (shock or simple wave).

Hence the following resolution of the initial discontinuity takes
place. The two trains of waves, separated by a contact discontinuity
proceed to the right and left, each being composed of the fast wave
(shock or centred rarefaction wave) followed by the Alfvén shock,
followed finally by the slow wave (shock or centred rarefaction).

In what follows the value of any quantity at the initial moment
will be denoted by the subscript 0; the values on the sides to the
right or left of the initial discontinuity or to the right or left of the
contact surface at later times will be specified by the subscripts r and
l, respectively. Since the sum of the jumps of a quantity across each
wave (shock, simple wave, or contact surface) must be equal to the
jump of the quantity across the initial discontinuity, we have the
condition

(A ug, Agug, 85w, Sgug, A g us, Ay ug) = Aguy (7.3.1)

s

where u; is the sth component of the quantity U of equation (6.1.2a)
and Aju; is the initial jump of u;, namely, Aju,=wu,o;—u;o,. The
summation involved here should be extended over all the possible
combinations among the seven waves. Equation (7.3.1) constitutes
seven equations for the seven parameters characterising the changes
across the (seven) waves and discontinuities: as was proved at the
end of Section 3.5, the solution is unique provided the initial jump
strength is small (94). In fact, if AU is the infinitesimal, all the
resulting discontinuities are also infinitesimal so that they are given
by equations (4.3.19), (4.3.22), and (4.3.24). The initial jumps
Agu; in equation (7.3.1) may be taken as AyS, Agp, Agv,, Ayv,
Agv,, AgH,, and Ay H,. Insertion of the jump relations into equation
(7.3.1) gives seven inhomogeneous linear equations for the seven
parameters characterising the smallness of jump, ¢, €4, € ,, €, €g
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eq» and e, where ¢, is the parameter associated with the contact
surface and will be taken equal to the entropy jump. For example,
if we assume that ¢,>v, >0, then the fast, the transverse, and the
slow waves on the right-hand side of the contact surface proceed to
the right while those on the left-hand side of the contact surface
proceed to the left. Consequently, in the right member of equations
(4.3.19), the — and + signs of ¢, should be chosen for the waves
proceeding to the right and to the left of the contact surface
respectively, i.e.,

Bn,;.p = nrP (7.3.2)
Bpr¥s = €npCn (7.3.3a)
8p1Vs = —€yCy (7.3.3b)
8prVy = —€3, ¢, 0,0, [(c2 —b2) (7.3.4a)
8,10y = €€, b, b,/(c2 —b2) (7.3.4b)
8, Hy = €, ,H,c%/(c2 —b2) (7.3.5)
1 1
(n = fors)
while equations (4.3.22) take the form

EA{'HZ = EA,ilHl (7.3.63:)
84,0, = €4b (H,>0, H,>0) (7.3.7a)
SAlvz = _EAlb (Hz = 0). (7.3.7b)

Hence we have the system of equations (¢, = A, S)
Pesrt pegy t Ec(ap/as)p tpeqtpey = Aop
CreptCoeq—Coeq—Cren = Ngv,
— (3 —B2) T €, — (2 — b)Y € y(c2— B2) T eg ¢ (cF —B2) ey
= Agv, /b, b,
c(c] —bz) ! e+ C3(c] — b)) ! e+ C3(cF — bF) e +€F(cF —bF) €
= A H,/H,
€arteq=00H/ H|
—eqteg =000,/
On solving these we obtain

1 op 7
=(— 2_ 2 _(¢eP ad 2
€ = (2RP) [(a c?) (Aop (3S)pA°S) +5n Ay H?

+ cﬂ,{(c? —bé) Agv,—b, b, Ay, ] (7.3.8)

(R = V(a2 +b%)%— 4a2b2)
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where the + and — signs of the right member correspond to the

subscripts r and ! of the left member, respectively. e, is obtained
1

from ¢;, by changing ¢, —¢, and ¢,—c, in this equation.
1
From equations (7.3.2) and (7.3.8) we obtain the expression for
8, p, which is regarded as the density change across each wave from
sl

the right to the left. Thus the §,, p are determined uniquely in terms
sl

of the unperturbed quantities and the initial jumps. Checking the
sign of each of them determines the type of each jump, i.e., whether
it is shock or centred rarefaction wave.

Since the fluid is at rest relative to a contact discontinuity, the
contact discontinuity may be considered as a perfectly conducting
piston moving with a velocity equal to the velocity of the contact
discontinuity. In fact at the end of the last section (47) it was shown
that a special Riemann problem is equivalent to a piston problem.
It was proved also (45) that the velocity of the contact discontinuity
may be expressed in terms of the parameters of the medium on either
side of the discontinuity, so that the problem is reduced to the
piston problem provided p,, <p, | Agv|<a. However, in general cases
these attempts to solve the system of jump equations directly or
to reduce the problem to a piston problem are not necessarily
successful (90). The resolution of an arbitrary discontinuity was
investigated in detail by Gogosov (91). In the subsequent discussion
we shall briefly outline his method of solution.

Let us first suppose that some of the seven waves so far considered
may be missing. Then, from the result obtained for the infinitesimal
discontinuity, it may be deduced that the seven initial discontinuities
cannot be given arbitrarily but must satisfy some additional
constraints. If the initial conditions satisfy these constraints, there
then arise many possible combinations of waves and discontinuities
(648 different possibilities).

(I) PLANE PROBLEM

We first assume that initially the z-components of v and H are
everywhere zero so that the resulting change in flow and field takes
place in the (x,y)-space only; consequently the possible transverse
wave is the 180° Alfvén wave. The simplest combination of waves
and discontinuities is that of a contact discontinuity and two
magnetoacoustic waves (shock or centred rarefaction waves). Since
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among the boundary conditions in equation (7.3.1) the conditions
associated with Ajv, and Ay H, are automatically satisfied, the
number of necessary boundary conditions is five, whilst the number
of unknown parameters characterising the changes across the waves
and the contact surface is three. (There are exceptional cases, e.g.,
(iii) in the subsequent discussion.) Therefore the two initial jumps
among Aju; cannot be specified arbitrarily but are determined by
the boundary conditions. These two jumps may be taken to be
Agv, and Ay,

Namely, corresponding to a combination of waves of this type,
we can fix a point in the (A,v,,Ayv,)-plane. From the analogy with
the piston problem in Section 7.2, it may be deduced that a combina-
tion of two waves and a contact discontinuity associated with two
Alfvén shocks would also correspond to a point lying in the upper
part of the (Ayv,,A,v,)-plane. It then follows naturally that the
lines connecting two of these neighbouring points correspond to the
combination of three magnetoacoustic waves and a contact dis-
continuity or to the combination of this type associated with two
Alfvén shocks. Therefore, the regions bounded by these lines
correspond to the combination of four magnetoacoustic waves and a
contact discontinuity or to the combination of this type associated
with two Alfvén shocks. The former of these cases occupies the
lower part of the plane and the latter the upper part, the two parts
being separated by a dividing line, the existence of which can be
seen easily by analogy with the piston motion (Fig. 7.2). We now
determine these points, lines, and regions.

First of all we group the possible initial configurations as follows
(H,> 0, the z-axis is directed to the right):

. (a) Hy0,l >0, HUO," >0
(1) Pa > Pors | Hyo,ll > | Hllox"l { (b) Hyo,l >0, Hyo,r <0
.. (@) Hyy>0, Hy,>0
| v, yor
(ll) Po<Por l HUOJI > Hyo,rl { (b) Hyo,l >0, Hyo,r <0
3 _ (@) Hyy>0, Hy,>0
(1) Py = Pors lHyo,z| = |Hyo,| { (b) Hy,;>0, Hyo,,< 0.

Configurations of other kinds may be derived from these by reversing
the orientation of the x- or the y-axes.

(i'a') Dot > Pors | Hyo,ll > l Hyo,rl ’ Hyo,l > O’ HyO,r >0.
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(A) The Combination of Two Magnetoacoustic
Waves and a Contact Surface

(A1) AT X
Since pressure and magnetic field are continuous across the

contact surface [cf. equations (4.3.24)] it follows from equations
(R.3) in Appendix D that

Bir=Bu (=81, (ap—ay) (Byogpayy—1) =0, (7.3.9a)

where the subscript 1 denotes the quantity adjacent to the contact
surface and this equation is valid for slow and fast waves.

On the other hand, in view of the definition of « and B, it is
true for fast waves that B;a;,a;—1>0 and for slow waves that
B1oq,;— 1< 0; hence we have in either case

0y, = oy (= oq). (7.3.9b)

Equations (7.3.9) not only determine «; and B, in terms of ay,, S
agy and By but also require that the two initial points («g, By) and
(ot Bor) must be on the same integral curve in the fast wave region
of Fig. 5.3. Once «; and B, are determined, by virtue of equations
(R2.a,b) in Appendix D, Ayv, and A,v, are determined. (The
assumption | H,g;|>| H,, .| excludes #, 7 %,.) Other possible combina-
tions are classified into the four groups which correspond to the cases
Pa=ps, Hy,=H,, where p, and H, are defined by the equations
Py = plr(po,r’ Hyo,r’ Hyl,r = yo,l)
H, = H,, (Do, Hyop, P17 = Do) -
(A.2) py>py, Hy,>H, (Fig. 7.7) (H, may not exist)
TS RBTS £I5 BRI, TS,
(A.3) py<py, Hy,>H, (Fig. 7.8) (p, and H, may not exist)
*T S, KT RIS BRI, TR
(A4) pu<py, Hy,<H, (Fig. 7.9) (p, may not exist)
KT R, £$,T5, TR, £SHT.
(A.5) py>p,, Hy,<H, (Fig. 7.10)
RT S, $T5 RRIR, TS, T EKET .
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["‘7;‘7-‘?; is possible if p_,( Py, Hyo,r’ Hy = 0)>p_y(Po, Hyo,l’ Hy = 0);
if in (A.3) and (A.4) & ¥ is possible there will be a corre-
sponding point in Figs. 7.8, 7.9, 7.12, and 7.13.] These solutions (A.2),
(A.3), (A.4), and (A.5) are obtained on the basis of Figs. 7.7, 7.8, 7.9,
and 7.10, respectively, whilst the values of Ajv, and Ayv, for these
solutions are found in Figs. 7.11, 7.12, 7.13, and 7.14, respectively.

Figures 7.7 to 7.10 which illustrate the relation between p and H,
are obtained on the basis of equations (8;.2), (S,.2), (R.1b), and (R.3)
of Appendix D, whilst Ajv, and A, v, are fixed by means of equations
(S¢.4), (8:.5), (S4.4), (8,.5), (R.2a), and (R.2b).

(A.a) The combination of two magnetoacoustic waves, two Alfvén
shocks, and a contact surface. Since Hy,> 0, H,,,> 0; the combination
comprising one (180°) Alfvén shock is excluded, moreover, in the
combination under consideration which comprises two Alfvén shocks,
they must exist on either side of the contact surface.

Since across Alfvén shocks, only v, changes and v, does not
undergo any jump, the value of Ajv, in the present combination is
equal to that in the previous combination (A), whilst Ajv, is
increased by the amount of change suffered in crossing the Alfvén
shock.

For example, corresponding to %,.7 ¥, we have A%, T o4 ¥ and
the corresponding points in the (Ayv,,A,v,)-space have the same
value of Ajv, (cf. Figs. 7.11 to 7.14).

(B) The Combination of Three Magnetoacoustic
Waves and a Contact Surface

Joining any two points in (A) results in a line for the combination
under consideration. For instance, in Fig. 7.11 let us consider the
four points £, 7 Y, .9 &, T &S, and %, A, 7 . Then, joining the
first point #,.7 ¥, to the others results immediately in &%, .7,
R T &S, and B R, T S,

Thus the internal lines, the lines which join two points, are easily
determined. However, we have still to consider the external lines
which emerge from one of the points (A) and terminate at a boundary
curve or do not terminate. In order to illustrate one of them we
again consider the point %, 7 ¥]. As can easily be seen from the fact
that four internal lines emerge from one (internal) point such as
R, T &, there must be four lines diverging from the point #,.7%;
whilst the lines so far obtained are the three, %, ¥, #,9 &,
and % %, 7 ¢;. The remaining possibility is obviously %, %, ;.
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F16. 7.7. The p-H, relation in case (i.a) (A.2).
Por> Por » Hyoy>Hyp >0
Por>P+ 5 Hy>H, .

P

Fi1c. 7.8. The p-H, relation in case (i.a) (A.3).
Por>Por » Hyoy>Hyy,, >0
Po<P+> Hy,>H, .
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Hy
Hyo1 A
\%f S
%
%
R
I"/O,r s
%
%r %l P

F16. 7.9. The p-H, relation in case (i.a) (A.4).
Dg1>Por > Hyoy>Hy,, >0

Pou<P+> Hy,,<H,.

"())r' '%l P
F1c. 7.10. The p-H, relation in case (i.a) (A.5).

DPor> Por > Hvo,l> Hvo,r> 0
Por=>P+ Hy,.<H,.

283
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Investigating the jump relations for this combination we can see
that this leads to a cavitation, i.e., terminates at a boundary
corresponding to a vacuum. Another external line which also
terminates at the vacuum boundary is seen to be % %, 7 %,. This
issues out of the point Z,#,7 . We have also the two external lines
diverging from &.9Y,, 4,7 ¥, and & T X%, Since there is no
onset of cavitation along these lines they do not terminate. The
remaining external lines terminate at the dividing line, the line
which separates the two combinations (A) and (A.a). [The equations
for the vacuum lines and the dividing lines are given by Gogosov
(91, 92).]

(B.a) The combination of three magnetoacoustic waves, a contact
surface, and two Alfvén shocks. The discussion is parallel to (B).
Namely, joining the points in (A.a) gives the internal lines, while the
external lines are similarly constructed.

(C) The Combination of Four Magnetoacoustic
Waves and a Contact Surface

This of course corresponds to a domain bounded by the internal
lines, by the internal, the external, and the vacuum lines or by the
internal, the external, and the dividing lines.

(C.a) The combination of four magnetoacoustic waves, a contact
surface, and two Alfvén shocks. The portion of the dividing line
separating the two regions %%, T RARK, and B, ART R, AX; is
straight but other parts are not necessarily straight.

(i.b) pu>per |Hygyl>1Hy,l, H,

01 >0, Hy,<O0.

The method of solution is similar to (i.a), the difference being that
in every combination there must be an Alfvén shock going to the
left or the right so that the direction of the transverse magnetic field

is reversed.
(iLa.b) Py <Pors | Hyo| > Hyo -
The argument here is similar to that for the corresponding case (i)
and for the details we refer to Gogosov (91, 92).
(iii.a)  Pgr = Pors Hyy, = Hy;>0.

Since in this case the two points (py,, H,,,) and (pg, H,,) coincide
in the (p, H,) diagrams as in Figs. 7.7 and 7.10, the situation differs

greatly from those of the previous cases (i) and (ii). For example, for
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ST S, the jumps of H, across the two fast shocks must be the same
in order that the magnetic field is continuous beyond the contact
surface. When this is true the boundary conditions

Afrp"Aﬂp =0
A/rHy_AﬂHy = 0

are automatically satisfied for any magnitude of the jump A, H,.

The condition for the density (or the entropy) jump is used to
determine A,p in terms of A, H,; the conditions for Ajv, and Ayv,
contain a parameter A;H,. Consequently, eliminating A, H, from
these two conditions leads to a relation between Ajv, and Ayv,.
Therefore, contrary to the correspondence between (i) and (ii), the
combination of two magnetoacoustic waves and a contact discon-
tinuity generally corresponds to a line in the (A,v,,Ayv,)-space.
Moreover, in a combination of this nature the two waves must be of
the same type and are on either side of the contact surface. That is
to say, we have the following combinations:

ST, LTS, RIR, and BRI,

As can be easily seen from the discussion of equation (7.2.4), these
combinations correspond exactly to the curves &, &, %, and %, in
Fig. 7.2, respectively, there v, and v, correspond to Ayv, and Ayv,,
respectively. In other words, the present case may be reduced to the
piston problem in which the initial state ahead of the piston is
specified by p, and H,,. The correspondence of other combinations
is obvious: & %,, X A,, etc., in Fig. 7.2 correspond to %, T X, S,
and £, R, T R, XK, etc., while corresponding to a combination com-
prising the 180° Alfvén shock in Fig. 7.2 such as S A%, we
have combinations such as &A%, T XS, The vacuum lines
in Fig. 7.2 correspond to the resolution of an arbitrary discontinuity
by the combination of two %, waves of maximum intensity. After
the passage of these waves a vacuum will occur.

(IT) ROTATIONAL PROBLEM

If initially the transverse magnetic field has a rotational dis-
continuity, then we cannot refer to the coordinate system in which
H, = 0 everywhere and Alfvén shocks of arbitrary angle emerge.
Even in this case, Ajv, takes the same form as that of the
corresponding configuration in the plane problem; A v, and Ayv, are
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obtained as follows. Let the combination be %;4%,.J %, 4%, in
which 2" denotes the magnetoacoustic wave (shock or simple wave),
some of which may be missing. Then we have

Vit ¥+ Ay v+ Agvy = v, + 8,0+ A v+ Ay,

where the suffix ¢ denotes the transverse component and A;v, and
A;v, denote the jumps of v, across Z; and Z;, respectively.

Since the flow and the magnetic field do not rotate across Z; and
Z,, the jumps of the flow velocity may be written as

Apvy = —Hy iy, Agvy = —Hp g
Apvy = Hy, 4y, Ay v, = Hyp, g,

where i, ., ¥y, and i, are scalar functions and are given in terms
of the corresponding jumps of the magnitude of the transverse
magnetic field. The expressions for these may easily be calculated
from equations (6.2.5) and the jump conditions given in Appendix D.}

Hence we obtain
Agv,—L =R (7.3.10)

in which the vectors L and R take the forms

_ B [
L = Hy, b+ Hy 3y + A/ dmpy, Hy,,+ dmp,, H,,

- _ | w [
R = Hypg+ Hyy g, A/ trpr Hy,,— e Hy,,.

1r

Since H,,; and H,,, are parallel (otherwise H, is not continuous across
the contact surface), R may be written as

R =e¢y9

where e, = Hy,,/| Hy5;| = Hyy,/| Hpp .| and ¢ is a scalar function.

We now observe the behaviour of a special combination which in
the plane limit (i.e., the limit of H,; = 0) is given by a line in Figs.
7.11 to 7.14; for example, %I XX, and BAT RAXK,;, etc.
Corresponding to this specification of the combination, L and R are
respectively determined. Let us for a moment assume that H,; is
parallel to Hy,,. Then, H,;; and Hj,, are also parallel to them, hence
in this case we may choose a coordinate system such that the y-axis
is orientated along H,, so that L, = 0. Accordingly, from equation

t The states between Z; and .« and .« and %, are specified by the subscripts
1 and 2, respectively.
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(7.3.10) it follows that Ayv, = 0 implies R, = 0 (i.e., that the point
(Bgvy, Agvy, 0) in the (Ayv,, Ayv,, Ayv,)-space lies on the specified
curves of Figs. 7.11 to 7.14, such as %, T AR, R, A T K, R; which
may be regarded as being on the section Ayv, =0 in the three-
dimensional velocity space). As A,v, changes from zero keeping
A,v, constant, L, and |R| remain unchanged, hence equation
(7.3.10) gives a circle of radius | R| in the plane section for the value
of Ayv,, with its centre at the point (Ayv,, L,, 0) and with equation

(Bovy— Ly)*+(840,)* = R?.

As A,v, changes, the circle generates a surface in the (A,v,, A,v,,
A,v,)-space which separates the space in the same manner as the
lines for Ajv, = 0 separated the (A v,, A,v,)-plane. For example,
when the curves %, 7 %, %, and %,/ (180°) 7 X,/ (180°) %, bound the
two regions &, %, T R, Ry, X; S, T R, X, and the two regions

R, A (180°) R, T R, (180°) 4%, , R4 (180°) S, T R4 (180°) X%, ,
respectively, the corresponding surface bounds the two regions
R 54 (0) R, T R, A (0) %, and R A (0) S, T R, A (0) X, .

If Hy,; is not parallel to H,,, L, is not equal to zero but |R| is
unchanged and hence the modification is only to shift the surface in
accordance with the equation

(Ao Uy — Ly)z + (Ao v, _Lz)z = RZ%.

Constructing the surface for each combination specified so far, we
obtain a three-dimensional graph which determines the resulting
combination for a given initial discontinuity. If p,. = p, we should
of course refer to Fig. 7.2.

Finally we discuss the limit case in which the normal component
of the magnetic field is zero. If H, = 0 (i.e., waves proceed always
normal to the magnetic field), problems reduce to ordinary hydro-
dynamic cases. This may be seen directly from the discussions in
Chapters 5 and 6.

One of the interesting cases where there still exists a peculiarity in
magnetohydrodynamics is the resolution of an initial discontinuity
separating a high pressure region of fluid from a low pressure region
by means of a magnetic field nearly compensating the large pressure
difference. The details of this problem were given by Kato (62) who
considered the possibility of an application to pinch dynamics.
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In conclusion we remark on the important role played by
Riemann’s problem due to the fact that the collision of two shocks
can be reduced to this case provided the moment of collision is taken
as the initial time. The simplest example is the head-on collision of
two shocks of equal strength and of the same type. In this case
initial discontinuities exist only in the flow velocity and consequently
the problem is reduced to case (iii), although by virtue of symmetry
the contact discontinuity does not appear. If the fluid ahead of the
two incident shocks is at rest then, after the collision, the fluid
behind the last reflected waves is at rest. Hence the reflection of a
shock at an ideally conducting wall at which the boundary condition
v = 0 is valid can also be reduced to this case.

At the moment of collision of shocks of unequal strengths there
will exist discontinuities in pressure and density as well as in flow
velocity. The problem thus reduces to cases (i) and (ii) already
discussed and we refer to Gogosov (91, 92) for details.



SPATIAL
DISCONTINUITIES

8.1. WEAK DISCONTINUITIES IN
StEADY FLOWS

In SecTiON 4.4 we saw that spatial discontinuities exist in steady
flow which correspond to the Mach wave in ordinary gas dynamics.
So far we have not yet investigated the behaviour of these discon-
tinuities in the general case. The aligned case in which the directions
of flow and magnetic field are parallel (or anti-parallel), however,
allows some exact analytical treatment and in what follows most of
our discussion will be related to this special case. For a steady flow
all the time derivatives in equations (4.2.4) to (4.2.7) must be set
equal to zero when these equations take the form

V-(pv) =0 (8.1.1)
(v-V)v:—%Vp+i’:—P[VxH]xH (8.1.2)
Vx[vxH]=0 (8.1.3)
(v-V)S=0 (8.1.4)
V-H=0. (8.1.5)

Equation (8.1.2) may be re-written in the form
v? 2 1 ,
V=) —vx[Vxv]+-—Hx[VxH]+-Vp=0. (8.1.2)

2 47mp P

It is easy to see that equations (8.1.1), (8.1.3), and (8.1.5) admit a
solution of the following type:

H = «py (8.1.6)
provided that « satisfies the equation
V-V)k=0, (8.1.7)

293
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namely, that « is constant along each streamline. When equation
(8.1.6) is valid we may obtain Bernoulli’s theorem directly from
equation (8.1.2') in the form

2 d
v—+f£ = constant (8.1.8)
2 P

along each streamline.

If in some spatial domain D, « is constant, then « is constant
everywhere over the region covered by the streamlines issuing out of
or entering into the domain D. In the subsequent discussion we
assume that « is constant everywhere. Then, for isentropic flow, the
system of equations (8.1.1) to (8.1.5) reduces to

V-(pv) =0 (8.1.1)
and

(v~V)v=—-a—;2Vp+ﬁ[Vx(pv)]xv (8.1.9)

where g denotes ux?/4m.
In view of the general rule (1.6.25’) the characteristic equations
for this system are given by the equations

8(pv,) =0 (8.1.10a)
and

2
vnav+pvx[nxa(pv)]+%n3p=o (8.1.10b)

in which n is the unit vector normal to the spatial discontinuity and
8 denotes the variation across the discontinuity surface.

Introducing the transverse unit vector t orthogonal to n and
writing v—wv,n = v,(=vt) we obtain the following system of
equations for 8p, dv,,, and dv,:

pdv, +v,8p =0 (8.1.11a)
pv, 8V, + pv; 6y, +a28p = 0 (8.1.11b)

and
(1—pp)dv,— v, 6p = 0. (8.1.11c)

In deriving equation (8.1.11b) from equation (8.1.10b) we have
used equation (8.1.11¢) which is a direct consequence of equation
(8.1.10b) and may be written

aé(py,) = dv,. (8.1.11¢")
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We note here that equations (8.1.5), (8.1.6), (8.1.10a), and
(8.1.11¢’) imply
SH, =0 (8.1.12a)
and

ﬁaH, = 8,. (8.1.12b)

From equation (8.1.11c¢) it follows that the flow and consequently
the field do not rotate.
From the secular equation of the system of equations (8.1.11a,b,c)
we have
vn—(1—fip)a®— fipv® = 0.
Since in terms of the Alfvén number A, defined by

A = v/b,
it follows that ip = A~2, this equation takes the form
siny = (M2+ A2—1)/ M2 A4? (8.1.13)

in which M is the Mach number and is equal to v/a and y is the angle
between the vectors v and t. Hence the condition for the existence
of a real y (namely, real characteristics) is given by

0 (M24+ A2 —-1)/M2 A2 1,
and so we have

case (f):

or
case (8):
A<1, M<1 with A2+ M2—1>0.

A>1, M>1

The inequality (f) implies the condition v >max (a,b) whilst the
condition (s) implies v <min (a,b). Hence, as can be seen from
Section 4.3, case (f) corresponds to the fast wave and case (s) to the
slow wave. If, and only if, one of these conditions is satisfied will
the original system of equations admit real characteristics other
than streamlines. The inequalities (f) and (s) are illustrated in
Fig. 8.1; the curves correspond to two different isentropes.

Equation (8.1.13) implies that the two characteristic directions
are symmetric with respect to the direction of the flow velocity.

The angle y, of course, reduces to the Mach angle (cf., Section 2.1)
in the limit H -0 (i.e., A —>00). In this sense the discontinuities in
cases (f) and (s) will be called (hydromagnetic) fast and slow Mach
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waves, respectively. [See also Fig. 1 and the discussion in the paper
by Sears (81).]

Introducing yx determined by equation (8.1.13) into equations
(8.1.11) we obtain the relationships which exist between the jumps
8p, 8y, and 6v,,.

0 1 M

F1e. 8.1. Diagram showing the elliptic (undashed) and the hyperbolic
(dashed) regimes for aligned-field flow. The two curves are isentropes corre-
sponding to different stagnation Alfvén numbers.

These relations together with equation (8.1.13) yield the results

3
("’%—az)f =, 8y,

and
(v2 —a?)fv? =sin2y —M-2 = (M2—-1)/A2 M2.
For a compressive change 8p >0 and we have:
if M >1 [i.e., in case (f)],
v,-8v,>0
and,
if M <1 [i.e., in case (s)],
v,-8v,<0.
Since the flow does not rotate, selecting the direction of ¢ such that
v,> 0 leads to the relations

for (f), 8v,>0
and
for (s), 8v,<0.
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By means of equation (8.1.12b) these relations become
8H,>0 in case (f)

and
8H,<0 in case (s).

On the other hand, 8H, = 0 and therefore we may conclude that
for a compressive change the magnetic pressure p,, increases in case
(f) and decreases in case (s).

(f)

y<

(s)

Fi6. 8.2. The figure shows the change of the flow velocity v across a
characteristic; ¢ is the unit vector tangent to the characteristic, n is the unit
normal, and (f) and (s) denote the fast and slow Mach waves, respectively.

At the same time, for the configuration given in Fig. 8.2, we have
that in case (f) the magnetic field and flow velocity deflect upward
whilst in case (s) they deflect downward. These results are not new,
and may be obtained as the weak limit of the fast and slow shocks
discussed in Chapter 6; namely, as was proved there, the transverse
component of the magnetic field increases across fast shocks and
decreases across slow shocks. This immediately implies the present
result (see also Fig. 6.3). This approach leads to the fact that the
slow wave is forward facing; namely, that for flow past a sharp
corner of a perfect conductor, making a small angle 8o with the flow
direction (see Fig. 8.3), by virtue of the boundary condition on the
surface of the conductor the direction of the flow velocity changes by
an equal angle 8¢ across the spatial discontinuity (Mach wave)
starting from the corner. By means of the property so far explained,
the fast Mach wave develops downstream and the slow Mach wave
develops upstream.
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The investigations of spatial discontinuities in a general steady
flow that have so far been carried out are local (58, 64), or involve a
linear approximation.

)

v
M

AAANNNNNNY AN

F16. 8.3. An illustration of the fast and slow characteristics resulting from
flow passing a sharp corner with an infinitesimal inclination &g.

The characteristic equations for this case are easily derived from
equations (8.1.1) to (8.1.5). Assuming that the flow is isentropic, we
obtain the equations

3(pv,) =0
a? I _

H,v,év,—b28H, = 0
H,év,—v,8H,— H,dv, =0
8H, =0
which are closely analogous to equations (4.3.1) and (4.3.9) to
(4.3.13). This system admits the solution
dv,=8p=38H?*=0
provided v, = +b,, that is,

cos@—x) _ . 4
cos -

in which ¢ and x are the angles between H and v and ¢ and v,
respectively.
The magnetoacoustic discontinuity can be expressed by the
equation
(02, —a?) (o8 — b2) — o2 b2 (HF/H2) = 0,
that is,
A2 M?sinty — (A2 + M?)sin?y = —sin?(f—y).
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For two-dimensional flow, the hyperbolic condition may be
obtained graphically as was illustrated in Chapter 4 or may be
derived directly from this equation (89).

8.2. TuE REDUCIBLE ForM OF PLANE
ALIGNED-FIELD FLOW

If the state at infinity is a constant state, then « becomes constant,
the flow is homentropic (i.e., S is constant everywhere), and equation
(8.1.8) holds throughout the flow, namely,

v a? 02
2 + y—1 = 2
where 7 is a critical speed for cavitation (i.e., p = 0).

In view of equations (8.2.1) and (8.1.2'), the flow is governed by
the system of equations

(8.2.1)

Vx(1—A-2%)y =0 (8.2.2)
and
V-(pv) = 0. (8.1.1)
By means of equation (8.2.1) p, and consequently 4, is given in
terms of v and hence when we restrict ourselves to plane flow this
becomes a homogeneous quasi-linear system of two independent
variables, say x and y, for the two dependent variables v, and v,.
Therefore, according to the discussion in Section 2.1, the analysis
becomes particularly simple and the results of the general methods
of solution described there become directly applicable where the
hyperbolic case is concerned. Even for the elliptic case, as was noted
in example 3 in Section 2.1 and in Appendix F, the hodograph
transformation is successful since this system is reducible. This was
actually carried out by Seebass (83).
Similarly to the calculation for the ordinary gas dynamic equations
discussed in example 3 of Section 2.1, we may transform this system
into the standard matrix form,

U,+AU,=0  with U= [Zx]

Y
which gives two families of real characteristics and two Riemann
invariants which are constant along characteristics provided that the
system is hyperbolic. Following the discussion of that example we
may introduce characteristics I'*) in the hodograph plane as well
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as characteristics C'® in physical space. In the subsequent calcula-
tion, however, instead of following this direct but tedious procedure
we refer to the method closely analogous to that used in the previous
section for the discussion of weak discontinuities. Let us suppose a
region covered singly by the two C'£) characteristic families. Then,
choosing n and t directed in the sense of increasing y, across a
characteristic of one branch, say C'+), we have similarly the following
system of equations for dv, the change of flow velocity along a
characteristic of the other branch C-),

(1—A4-2)dv,—pv,dp = 0 (8.2.3)
pdv, +v,dp =0 (8.2.4)

a?
v, dv, +v,dv, = —;dp. (8.2.5)

Equations (8.2.3) and (8.2.4) are the consequence of equations
(8.2.2) and (8.1.1) and are equivalent to equations (8.1.11c) and
(8.1.11a), respectively, whilst equation (8.2.5) is the differential form
of Bernoulli’s theorem (8.2.1) and corresponds to equation (8.1.11b).

Eliminating dp from these equations we obtain the results

dy, 1 dy,

do _ 1 2.
vy, 1-A4%2v, (8.2.62)
and
v, dv, = (az—vﬁ)% . (8.2.6b)

n

The secular equation of this system for dv, and dv, leads, of
course, to equation (8.1.13), namely, the system of equations (8.1.1)
and (8.2.2) is hyperbolic in cases (f) and (s), otherwise it is elliptic.
Equation (8.2.6a) implies that for fast waves the vectors dv and v
are on opposite sides of the vector ¢ whilst for slow waves they are on
the same side of ¢ (cf. Fig. 8.4).

Let the polaranglesof v, ¢,and dv be ¢, ¢, and , respectively. Then,
by means of the relations v, /v, = tan (¢ — ¢) and dv, [dv, = tan (Y —¢),
equation (8.2.6a) becomes

tanw = (42— 1)tany (8.2.7)
w=y-4

x=¢-9¢.

in which

and
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We now introduce the angle y’ through the equation
X =§—p=wtx (8.2.8)
which is equal to the angle between the tangential direction of a

I-characteristic dv and the flow velocity v. Then, inserting
equations (8.2.8) and (8.1.13) into equation (8.2.7) and solving with

N Fast

(b)

Fic. 8.4. The geometrical relations between the direction of v, dv, and ¢ for
(a) the fast wave and (b) the slow wave, the angles ¢, ¢, and ¢ are their
respective polar angles measured anti-clockwise, the angles y and y” are the
angles between t and v, and dv and v, respectively, and are measured from v,
whilst the angle w is the angle between dv and ¢ measured from ¢.
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respect to tan y' we obtain for fast Mach waves

tany’' = TN’ (8.2.8a),
corresponding to

tany =+ N (8.2.8b);
and for slow Mach waves

tany' = + N’ (8.2.8a),
corresponding to

tany = + N (8.2.8b),
where

, (A2 M2—1)(M2-1) A/ A2+M2—l
N ‘A/ A2-1 and N = y(M2—1)°

In these equations, for fast waves the + and — signs in equation
(8.2.8a); correspond to the — and + signs in equation (8.2.8b),,
respectively, whilst for slow waves the + and — signs in equation
(8.2.8a), correspond to the + and — signs in equation (8.2.8b),,
respectively. From these results it follows also that for fast Mach
waves |x'|>m/2,T for slow Mach waves | x| <|x|, and for both waves
x and x’ are of the same sign. Since in the polar coordinates (v, ¢) in
the hodograph plane we have

vdep , .

T tan y (cf., Fig. 8.5),
equations (8.2.8) become:

for fast waves

dp=FN' = (8.2.9),

and
for slow waves

dp = + N'd—: (8.2.9),

corresponding to tan y = + N, respectively. These equations can, of
course, be derived easily from the equations expressed in Cartesian
coordinates (86).

Since in view of equation (8.2.1) 4 and M can be expressed in terms
of v, equations (8.2.9) determine the change ¢ in terms of v or vice
versa. It should, however, be noted that equations (8.2.9) do not
hold along corresponding characteristics but that they hold along

t This may be seen from the pure gas limit 4 — oo in which w = 7/2.
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another branch of the characteristics since dv is the change of v across
the characteristic of polar angle x. For example, when a characteristic
with tan y > 0 is given, for fast waves, equation (8.2.9); with the minus
sign is valid not along the characteristic but along another branch
with tan y < 0; namely, we have the following representation:

for fast waves

dp=FN'= (8.2.10a),

™

Fic. 8.5. The relation in the hodograph plane.

is valid along characteristics given by

tany = ¥ N, respectively, and (8.2.10b),
for slow waves
do = iN’d—: (8.2.10a),

is valid along characteristics given by
tany = T N, respectively. (8.2.10b),
The Riemann invariants take the form
pt fN’(v) d—; = constant. (8.2.11)
On the other hand, in view of the relation for the differential of a
C-characteristic, dr,
(v-dr)? = v¥(dr)?/(1 + tan?y),
equations (8.2.8b) may be given in the differential form:

A2(v dx +v,dy)? = a?(A%—1) (M>—1)((dx)*+ (dy)?).
(8.2.12)
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We now investigate the change of ¢ with respect to v in the
Riemann invariant, i.e., along I'-characteristics. Similar to the pure
gas limit, Bernoulli’s theorem (8.2.1) yields

v<d, (8.2.13)
and
. 1 v2— 22
where
=Y ! ,
y+1
and consequently we have:
for fast waves
v>a (8.2.15),
and for slow waves
v<g (8.2.15)
h ]
where
a = vi; (8.2.16)

whilst 42—1 takes the form

1—2\|Vr-1)
A2—1= [Ago{ago( ): - (1’32_1;2)1/()'—1)] (82— v2)~ V-1 |

V2
(8.2.17)
where the subscript co denotes the value at infinity.
Hence v? must satisfy the conditions:
for fast waves
02> b2 (8.2.18),
and for slow waves
v? < b? (8.2.18),
where
A 1 - V2
b= [0?—|—5—)a2 A%~V (8.2.19)
14
and consequently b is smaller than 4.
By virtue of the relation
. 2
1)2 = vi-l_‘y_lagw’
b may be given in the form
2
b2 = f:% (2 M2 + (1 —12) (1 — A27-D)) | (8.2.19")

Hence, if
vEME +(1-0%) (1 - A% <0, (8.2.19")
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then 5% becomes negative and consequently the condition (8.2.18),
is satisfied automatically, whereas slow Mach waves cannot exist.
For y = 5/3 this condition becomes

M2 < —3(A%3-1) or M2 +3<34483.
Let us assume that 2> 0, that is, that

V2 M2 > (1—2) (429D 1), (8.2.19")
Since we have
s pa_ 17V 2(y—1) _ 2 M2 2
a?—b? = 2 aoo(Aooy -V Moo_(l_"))’

the inequalities
a=b (8.2.20a)
hold according as
A2 (1 —12) =02 M2, (8.2.20b)

hold, in which the upper and the lower inequality signs in each
inequality correspond, respectively.

The lower inequality sign in (8.2.20) (i.e., ¢ <b) of course implies
the inequality (8.2.19"). For ¢ >b, from the conditions (8.2.19”) and
(8.2.20) we obtain

1 1—v2 1-—y2
ﬁAggv-D > M2+ T A1, (8.2.21)
For y = 5/3 this becomes
4443 > M2 43> 34453 (8.2.21')

Finally, by virtue of equations (8.2.14) and (8.2.17) A2+ M2—1 may

be expressed in the form

A2 M2—1 = (62— v2)~1 [1=2(v? — g2) + (62 — b2)M/(r=1) (2 — 42)(r—2)/(y-1)]
(8.2.22)

Hence, for slow Mach waves, we find that the inequality

(62 — v2)(2=7) (g2 — p2)(r=1) — L2(r=1)(§2 — h2) < O

must be valid or, by virtue of equation (8.2.19), this may be written
as
(62 —v?) @) (2 42 — o)~ —p2r—1) ((1 —1?) 1) a2 427~V <0,
(8.2.22')
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For y = 5/3 this reduces to
f(V2)= (M2 +3— V) (M2 +3—-4V2)2—(3443)3<0, (8.2.22")

in which V2 = v?/a2.

AfOVD

(b /o.)l %(MZ’ + f —\ N
3MZe3) AN %

Fi1c. 8.6. The behaviour of the function f as a function of V2.

( \_r/a.,)z

The function f(V?) is shown in Fig. 8.6 and for
Viax = (M3 +3)
f(V?) takes its maximum value (M2 + 3)3— (34%3)3 which, by virtue
of condition (8.2.21'), is positive: for
Viain = 3(MZ +3)

f(V?) takes its minimum value equal to — (342/3)3.
If a > b [i.e., the condition (8.2.21’) is valid], then

b%la2 = M2 +3—343%3
is less than V2% and f(b%/a?)<O.
Therefore v must be in the range

v<v<)b

where v is the lowest root of f(V?) = 0.
If ¢ <b, the relation g?/a% = }(M2 + 3) yields directly v<v<g.
These relations can be summarised as follows (y = 5/3).
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(1) M2 +3<3443
Fast Mach waves: a<v<?

that is, FME+3)< Vi< M2 +3.
Slow Mach wave: does not exist
(i) 4443 > M2 +3 >3448 (i.e., a>b)
Fast Mach waves: a<v<?
Slow Mach waves: v<v<b

that is, (vjay )2 < Vi< M2 +3—3A443.
(ili) M2 +3>4A43%3 (i.e., a<b)
Fast Mach waves: b<wv<?d

that is, ME +3-3A3< Vi< M2 +3.
Slow Mach waves: v<v<g

that is, (v/ay)?t < VE<}(M2 +3).

In view of equations (8.2.14), (8.2.17), and (8.2.22) N'(v) takes the
form

(vz _ gz) {V—Z(vz _ Qz) (52 _ v2)(2—7)/(7—1) + (,,32 _ bz)ll(y—l)}

le(’v) = Vz{(.ﬁz _bZ)l/(‘/—l) _ ({;2 _ vZ)l/(v—l)} (132 — «02)

In each case the I'-characteristics can be drawn as in Fig. 8.7 and
have the following properties.

Case (i)

The admissible region for I'-characteristics is between two concen-
tric circles in the hodograph plane with radii 4 and g;

x =0 for v=ag,

x ==/2 for v=179.
One branch with dg/dv> 0, a I'*)-characteristic say, starts from a
point on the inner circle of radius ¢ in the direction of the radius
vector and v increases as ¢ increases until it becomes tangential to

the outer circle of radius 9. Along another branch with dp/dv<0 (a
I'=)-characteristic say, starting from the same point on the inner
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circle), as v increases ¢ decreases until it becomes tangential to the

outer circle. For A, -—>oco (i.e., H—0) these characteristics are

epicycloids (3).

04

0 010203 o7

Fic. 8.7b,s. A slow T'H.
characteristic in case (ii).

M2 =1/3, A2 =5/\27,
0-427< V' <0-6398.

| .

Fic. 8.7b,f. A fast I''~)-charac- Fic. 8.7¢,f. A fast I'-)-charac-
teristic in case (ii). teristic in case (iii).

M2 =5, A% =20/427, M2 =5, A =10/427,
V2<V<i8. V3:358< V<18.

Fi1c. 8.7a. A fast I'-)-charac-
teristic in case (i).

M2 =5 A2 =427,
V2< V<48,

Case (ii)
I'-Characteristics for fast Mach waves are similar to those in
case (i). For slow Mach waves, we have

x =0 for v

I
S}

and
X =m/2 for v=>H.
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Hence, because of the correspondence 4 —>v and g¢—>b we obtain a
figure similar to that for fast waves.

Case (iii)

For fast waves we must replace ¢ by b in case (ii).

As an illustrative example let us consider flow around a perfectly
conducting convex wall which is plane up to a point A and then
bends smoothly through arc # to a point B beyond which it is again
plane as in Fig. 8.8 (63).

Fast rarefaction

C(*)

F1c. 8.8. The fast rarefaction wave past a corner.

From the boundary condition at the surface of a perfect conductor
it follows at once that at the wall the flow velocity is parallel to the
surface of the wall. We now suppose that upstream, to the left of
point A4, fluid flows with constant velocity v, along the wall so that
in this region of constant state the flow is hyperbolic as in case (i).}
Accordingly, v, (= |v,|) must be in the range

a<v,<?.

Analogous to the pure gas case (3) we may assume that a rarefac-
tion takes place downstream, then from the general theory, the
state adjacent to the upstream constant state must be a backward-
facing simple wave and is bounded by a C-characteristic, say O,

T The suffix oo so far used may be taken to refer to this upstream constant
state.



310 8 4 SPATIAL DISCONTINUITIES

issuing out of point 4. Since downstream from the point B the state
is also a constant state, the rarefaction simple wave must be
similarly bounded by a C!*)-characteristic leaving in a downward
direction from the point B. Let P be a point on the bend & and let
the direction of the flow velocity at P be given by the angle —gp.
One characteristic leaving P must be a straight C+)-characteristic
directed downward, along which v and ¢, and consequently p, are
constant, and tany > 0.

On the other hand, point P is connected with the upstream
constant state through C(~)-characteristics along which, from equa-
tions (8.2.8a,b);, tanyx’' <0 and consequently de/dv<0. In other
words, v increases as ¢ decreases. Since ¢ decreases as P moves from
A to B, ¢ similarly decreases along C-)-characteristics when moving
in the direction from upstream toward P. Therefore, in the simple
wave region, v increases and consequently p decreases [cf. equations
(8.2.1)] when moving in the direction from upstream toward down-
stream; namely, we have a rarefaction wave consistent with the
initial assumption.

By a reversal of the flow direction a compression wave is also
possible with the present boundary conditions, as is also the case for
the pure gas limit. In such a case the simple wave must be forward
facing. However, by the same reasoning as for the pure gas limit,
although this flow could be realised under some particular boundary
conditions the flow is normally a backward-facing rarefaction wave.
In the limit B—+A we have a centred rarefaction wave. If the
rarefaction is sufficiently strong so that v reaches ¢ as ¢ decreases, then
cavitation takes place.

If, contrary to the present case, the wall is concave, we have a
compression simple wave. The C!+-characteristics then converge
and would form a shock. Most of these arguments parallel those for
ordinary gas dynamic flow.

We now consider case (ii). If g<w,<? then, without essential
modification, the same arguments as in case (i) yield the result that
normally a rarefaction wave will appear for the case of a convex
wall. If, however, v <v,<b, a slow Mach wave is realised.

We first assume that the wave is a rarefaction wave. Then v
increases in the direction from upstream to downstream (i.e., as ¢
decreases). In what follows it will, moreover, be assumed that the
rarefaction is not so strong that v does not attain the critical speed a.
This assumption implies that a simple wave can be constructed in



8.3. OBLIQUE SHOCK WAVES 311

the region adjacent to the upstream and downstream constant states
since the flow is completely hyperbolic in type over all space. [If v
exceeds the critical speed b, the flow becomes the hyperbolic-
elliptic type (79, 81).]

We now suppose at first that the simple wave is bounded by
backward-facing C'+)-characteristics and consequently that tan y > 0.
Then equations (8.2.8a,b), yield tan x’ > 0; namely, that v decreases
as @ decreases. This obviously contradicts our assumption that the
wave is a rarefaction wave. Let us now assume that the simple wave
is bounded by forward-facing characteristics say C~)-characteristics,
issuing out of 4 and B. We then have tan y <0 and consequently
tan y’ <0 which implies the rarefaction wave.

In this way the simple wave is normally a forward-facing
rarefaction wave. Employing the same argument we see that for
slow waves the flow around a concave wall is described by a forward-
facing compression wave. These arguments apply equally to
case (iii).

If the rarefaction is so strong that v exceeds the critical speed b
(or g), we encounter the hyperbolic-elliptic problem. Generally
speaking, this raises the question as to whether there exists a
smooth transition from elliptic to hyperbolic flow, or vice versa
(93,64,81,83,85). The method of characteristics is no longer
successful in investigations of this problem.

Using the Legendre transformation Seebass found some exact
solutions showing smooth transitions. The transitions were from the
elliptic to the hyperbolic-slow state, then to the elliptic state, and,
finally, to the hyperbolic-fast state, and are discussed in the papers
by Seebass and Sears (8§1,83). This is, however, beyond the scope of
our present work but for completeness the basic ideas are outlined
in Appendix F.

8.3. OBLIQUE SHOCK WAVES

Since, even in the case of one-dimensional propagation, the
hydromagnetic shock is essentially oblique, the results obtained in
Chapter 6 can be directly utilised for the study of oblique shock
waves in two-dimensional steady flow. The shock polar diagram
corresponding to the oblique shock in ordinary gas dynamics has
been given by some authors (3); we here refer to the discussion given
by Bazer and Ericson (81). Considering the application to flow
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problems such as flow past a sharp corner we assume, instead of
the field-flow configuration given by Fig. 6.1, the configuration
illustrated by Figs. 8.9a and b.

F16. 8.9a. The change of H across a fast shock.

Slow

Fi1g. 8.9b. The change of H across a slow shock.

As was shown in Chapter 6, H,, = H,; for any shock and the
transverse magnetic field does not reverse its direction for magneto-
acoustic shocks; for fast shocks |H,|>|H,| and for slow shocks
| Hyy | <| Hyp|. Hence if the angle ¢, the angle between H, and H,, is
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kept equal for both shocks we have Figs. 8.9a and b for fast and slow
shocks, respectively. Drawing the normal at the end of the vector
H, (drawn from the point O) to the vector H, implies that

Hysing = | Hy — Hy|sinx,,

where y; is the angle between H; and the shock surface. In terms of
the notation introduced in Section 6.2, this equation may be re-
written as
__ sing
sin (xo—¢)
We now suppose that the shock is not propagating but is steady
and, consequently, that the shock speed A = 0. Then the conservation
law (3.1.11) takes the form

[F-n]=0.

(8.3.1)

Hence we can easily see that the same shock conditions as were
derived in Chapter 6 (Appendix D) are valid for the present case
provided 7, is set equal to v,. (Of course the subscript y should be
read as denoting the tangential component and 6; = 7/2— y;.)

The equations in Appendix D, (S,.1) to (S,.5), (S,.1) to (S,.5), etc.,
imply that all the jumps across the shocks, that is, the left-hand
members of these equations, are determined when % and 6, and so
Xo and s, are specified, whilst y, is determined from equation (8.3.1)
in terms of » and ¢. Therefore, we may ask how the shock is deter-
mined when x, or 4, sy, and ¢ are specified. For this purpose we first
note that equation (8.3.1) gives a straight line of polar angle ¢
leaving the point (1,7) in the polar coordinates (k,yx,), which will
be denoted by W(g) (see Figs. 8.10a and b). Since for fast shocks
® < xo< /2 and for slow shocks 7/2 < y, < m, the admissible points for
fast and slow shocks are located on the respective parts of this
straight line. It should, however, be noted that A must be specified
in the range determined by the entropy and the evolutionary
conditions as follows.

Fast Shocks (p<xo<m|2, cosy,=sinb,)

for type 1: Sg=1— (;y—l) cos?x,

Oéhéﬁ, = )%lcosxo (8.3.2)
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for type 2: Sg<1— (Ll) cos?x,
Y

the positive branch:

0<h<h(>h,) (8.3.3)
the negative branch:
hy<h<h(xo). (8.3.4)
Slow Shocks (m|2<xo<m, COSY,= —sinb,)
0<h<h,=|cosy,l. (8.3.5)

We note here that in the present case the critical values of ﬁ,,s

and &, are not constant but depend on y,. Plotting fe,(xo) and % (x,)
in polar coordinates gives the two half-circles with radii 1/(y—1)
and } at the centres (1/(y—1),0), (},7), respectively. The in-
equalities (8.3.2) and (8.3.5) imply that the admissible states must
be inside these half-circles. The admissible points of slow shocks
are simply determined by that part of the straight line W(gp)
intercepted by the half-circle 4(y,). The discussion of fast shocks is
also simple provided s,> 1. In this case the admissible points are on
that part of W(p) intercepted by the half-circle //(x,). These are
shown in Fig. 8.10a. If, however, s,<1, we encounter a complicated
situation since type 1 shocks for small x, may become type 2 shocks
as x, increases beyond a critical value, say x} [which is given by the
condition s, = 1—(y/(y—1))cos®x¥]. Let us suppose that this
happens. Then, for x¥ >y, the shock is certainly of type 1 and
hence the admissible points are inside the circle fz,(xo). However,
as x, increases beyond yxf, the shock becomes a type 2 shock and
hence we have the condition (8.3.3) for the positive branch which is
extended smoothly from the type 1 shock and the condition (8.3.4)
for the negative branch. In Fig. 8.10b the curve corresponding to

ﬁf(Xo) is denoted by 7'(sy). The admissible points must be located on
that part of W(p) beneath the half-circle A, for xo < x; and the curve
T(so)-

It should be emphasised that all these results are valid whether
or not the fields are aligned and that for aligned-field flows they
imply that the slow shock is forward facing.

However, a realistic problem would be to determine y, for a given
@ when the state ahead is specified completely. This also gives the
character of the states ahead and behind with the possibility of
spatial discontinuities; namely, whether it is hyperbolic, elliptic, or
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hyperelliptic. This problem is extremely difficult and has not been
solved for the general case. Let us restrict ourselves then to the
case of aligned-field flow in which the state must be hyperbolic-fast,
hyperbolic-slow, or elliptic (supersonic or super-Alfvénic). We first
note that for fast shocks v,q>c,(n)>max (ay,by) in which c,(n)

90° < wilo)

so21
2 1 0 2/(y-1)
(a) 4
90° s
/' w (O)
s <1 \ T(so)
j '
N I 3
\ i ’/
N h % ’
AN I ’~ g
\ ! 4 s
\\ I,"’/ P ’/’
\\\ " //
N P \\ /’
2 1 0 2/ y-1
(b)

Fic. 8.10. The shock polar diagram due to Bazer and Ericson (§1).

denotes the fast disturbance speed in the direction of n. Since
Vo> Uy, it follows immediately that
Vo> max (g, by)

and consequently that
My>max (1,5512) > 1

and
Ay>max (s32,1)>1.
Therefore the state ahead of the fast shock is hyperbolic-fast.

For the slow shock we have
bpo> Vo> Co(n1) .
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The first inequality implies immediately that
Ag<1.
On the other hand, from the definition of c(n) given by equation
(4.4.2) it follows that
ab|cos |
Cs(n) Z ‘/'T“—-—* .
a®+b?
Hence we have
A+ M2—-1>0,
and consequently if s, > 1 (i.e., ay > b,), the conditions My<1, 45< 1,
and A2+ M2—1>0 hold. Therefore the state ahead of the slow
shock is hyperbolic-slow. However, if s,< 1, it may happen that the
state is elliptic (sub-Alfvénic, supersonic). The discussion of the
state behind is more difficult since it requires the determination of
Xo in terms of the quantities ahead. Hitherto, x, was determined in
terms of sy, ¢, and A, but in many cases it is desirable to express x,
in terms of s, ¢, and v,. This can be achieved by using an equation
such as (8;.3) in Appendix D in which », and %, are given in terms of
Sg» @, and x, by means of equations (S,.1) and (8.3.1).

The analytical expression for tanx, was derived by Cabannes (52)
who obtained a quintic equation with coefficients depending upon
A, tan g, and s,.

In general there are two possible values of x, for given 4, ¢, and s,
as was shown also by Bazer and Ericson in their graphical approach
(81). We now investigate the nature of the state behind the fast
shock. It can be proved (47) that as a rule the smaller angle shock
corresponds to the supersonic case behind (M, > 1) and the larger
one corresponds to the subsonic case behind (M, <1) (§1). On the
other hand, from the evolutionary condition we have

V1> bp1s that is, A >1,

and therefore as a rule the state of the smaller angle fast shock is
hyperbolic-fast behind, whilst the state of the larger angle shock is
elliptic behind. This is precisely the situation in gas dynamics.

For slow shocks, since we have

Up < csl(n) < bn ’

the state behind is hyperbolic-slow if
a, b
A2+ M3>1  or v >-—t

1 1 1 m

and at the same time the flow is subsonic.
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As has already been shown for the slow shock, the state ahead may
be elliptic if s, < 1; hence, combining these properties of slow shocks,
we can show that there exists a slow shock for which the state ahead
is elliptic and the state behind is hyperbolic (47,52). Finally, we
note that in flows similar to flow past a wedge or a corner, considering
the two shocks corresponding to the different values of x,, and for
the same values of 4, s,, and ¢, the smaller angle shock tends
continuously to the weak discontinuity but the larger one does not.}
We also note that the slow shock with the elliptic state in front also
does not have a continuous weak limit. In other words, these cannot
be formed from a smooth flow. An interesting discussion of this
latter case has been given by Sears (79, 81) in connection with the
anomaly of elliptic supersonic flow. It should also be noticed that
the discussion presented here is based on the evolutionary condition
on a one-dimensionally propagating shock against the normal
incidence of small amplitude waves.

As was proved by Kontorovich (66) the results for normal
incidence remain true for oblique incidence provided the ingoing and
outgoing waves are defined not in terms of phase velocity but of
group velocity, so far as the one-dimensionally propagating magneto-
hydrodynamic shock is concerned. However, it is not obvious that
the evolutionary condition thus obtained is also valid for the case of
a steady shock as would be produced in flow past a body. Rather,
we would expect that the correctly posed evolutionary condition
would play a further role in selecting a physically relevant solution
from amongst the admissible ones.

8.4. THE DISCONTINUITY IN THE
StaTic CASE

It is interesting to note that the Lundquist equations (4.1.2) and
(4.2.4) to (4.2.7) permit the existence of a spatial discontinuity even
in the static case (i.e., v = 0), when they take the form:

Vp+f—Hx[VxH]=0 (8.4.1)
T

and
V-H=0. (8.4.2)

t This property may be used to eliminate the larger angle shock from
consideration.
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Applying the rule established in (1.6.25') we see that these
equations imply the characteristic equations

Nl =
n8p+4ﬂHx[nx8H] =0

and
8H,=0.

The first of these two equations may be written
ndp* -4ﬁﬂ. H, 8H =0 (8.4.3)
when, taking the scalar product of this equation with n and using
the result 6H, = 0, we find the result
Sp* =0. (8.4.4)
Using equation (8.4.4) in equation (8.4.3) and writing
8H, = 8H—ndH, (= 8H)

we obtain the expression
H,8H =0,

and so the characteristic equations finally reduce to the simple
expression
H,=0. (8.4.5)

On writing the characteristic surface in the form
o(x,y,2) = constant

this equation becomest
H-Vo =0 (8.4.6)

implying that the discontinuity surface is a magnetic surface, in the
sense that it is composed of magnetic lines of force.
Since equation (8.4.1) gives the result

H-Vp=0

equi-pressure surfaces, p = constant, are also magnetic surfaces and
may be taken as characteristic surfaces. Noting that

47 ,
7]—VXH

1 This was first derived by Grad and Rubin (59).
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we find a similar relation for j, namely
j'Vp=0,

and consequently the equi-pressure surfaces are composed of current
lines; that is they are current surfaces. Across these surfaces a
discontinuity in pressure and magnetic field may exist such that the
jump in the mechanical pressure is balanced by the jump in the
magnetic pressure in such a way that the total pressure p* is
continuous as is required by equation (8.4.4).

The existence of real characteristic surfaces leads to a characteristic
boundary value problem when seeking to obtain a solution in a
volume bounded by a magnetic surface (59). A physically important
problem is the investigation of the nature of a solution in a closed
volume completely bounded by a magnetic surface on which p is
given. This problem has been discussed by many authors in connec-
tion with the confinement of a plasma by a magnetic field. In such
cases the pressure gradient is everywhere finite and non-zero over
the boundary surface: hence | B| is also finite and non-zero on the
magnetic surface.

So, considering a displacement on the surface along a magnetic
line of force, which may be determined by the equations

de _dy _dz
B, B, B

x ) 2

=ds,

immediately implies that the displacement has no fixed point which
is given by B,=B,=B,=0. Thus the closed surface under
consideration has no fixed point. So, from a well-known theorem,} it
follows at once that the surface is either a Klein bottle or a torus
(in the topological sense). Since a Klein bottle is obviously
unsatisfactory as a physical configuration we conclude that the
admissible closed volume must be topologically equivalent to a
torus (67).

Let us now consider a closed curve y lying on an equi-pressure
surface and taken around the short path on a torus (i.e., encompassing
the horizontal axis of the torus) and a magnetic line of force I' with
arc length ds issuing out of an arbitrary point P of y and traversing
the long path around the torus and ending at a point @ of y. For any

t Alexandroff, P., and Hopf, H., “Topologie,” p. 552, Theorem III. Springer,
Berlin, 1935.
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solution satisfying the boundary conditions assumed here it may be
proved that closed curves y exist, passing through any point of the
torus, such that the integrals
§ ds
r|B|

taken along magnetic lines of force I' are constant on the surface.t
(In special cases the integral path I" may close but, in general, this
is not so on account of the ergodic property of magnetic lines of
force.) This condition thus excludes the simple torus in which the
lines I' are circles, since in this case calculation easily shows that
the integral path I' closes and | B| is smaller for a longer path and,
consequently, the integral is not constant. Thus, if the magnetic lines
of force close along the axis of the torus, the configuration considered
cannot be a simple torus.

For example, for magnetic fields which are stronger for inner paths
and weaker for outer paths, the inner wall of the torus must suffer
some wavy deformation so that the inner paths traverse longer
distances than the outer paths. A more plausible configuration would
be realised by twisting the torus so that the magnetic lines of force
do not close after one turn along the axis of the torus. This
conception is well known and is called the rotational transform and
was first proposed by Spitzer. A detailed discussion of this topic is
beyond the scope of this work and reference should be made to the
work done by the project Matterhorn group (see, for example, Kruskal
and Kulsrud (67) and Greene and Johnson, loc cit., and the references
cited in these papers). Finally we should emphasise that a physically
admissible solution must be stable against small perturbations; the
theory of the stability of solutions has been extensively investigated
by many authors.}

+ This was first proved by Hamada (60) and, more recently, another proof
has been given by Greene, J. M., and Johnson, J. L., Phys. Fluids 5 (1962),
510-517.

1 Chandrasekhar, 8., “Hydrodynamic and Hydromagnetic Stability.”
Oxford Univ. Press, London and New York, 1961.



A

APPENDIX

Basic THEOREMS IN MATRIX THEORY

WE NOw SUMMARISE some of the basic theorems of matrix theory.
The mn elements a;,a,...,4,, which may be differentiable
functions with respect to a variable ¢, say, and which form the
rectangular array

a1 Gye A1
Aoy Qg ... Qg

4= . . . = (aij) (A.1)
aml a’mz amn

will be called an (m x n) rectangular matriz. The special matrices U
and V where

U= . and V = [e1,Cq --- €] (A.2)

m

will be called m and n element column and row vectors, respectively.
When in (A.1) m = n the matrix 4 is called a square matrix and
has associated with it the determinant A where

Ay Qg ... Gy
(g Ggp ... Ggp

A= i ; ) . (A.3)
Ap1 Ap2 Ann

The (k x I) matrix A and the (m x n) matrix B are said to be conform-
able for addition if k = m and ] = n. The sum C of the (m x n) matrices

321
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4 and B with elements a;, b;; is defined to be ' = 4 + B where the
elements c;; of (' are determined by c¢;; = a;;+by, ¢t =1,2,...,m,
j=1,2,...,n. The difference of A and B is similarly defined. The
null matrix O is the conformable matrix with all elements zero. Thus
two matrices are equal only if they are conformable for addition and
if all corresponding elements are equal. The matrix «4 where « is a
scalar is defined to be the matrix (aa;;).

The product C of the (k x m) matrix 4 and the (m x n) matrix B is
defined as

C=A4B
where
n
c.ij= Eaisbsj, ’l:= 1,2,...,k, j= l,2,...,n.
s=1
In general AB# BA.

A square matrix 4 for which A0 is said to be non-singular and
possesses an inverse matrix denoted by A-! where

AA1 = A14 =1 (A.4)

with I the identity or unit matrizx

100 . . . 0
010 0

I= 0 0 1 0
1

Associated with matrix A is its transpose A’, obtained from A by
interchanging rows and columns. If 4 = 4’ the matrix 4 is said to
be symmetric, and if A = —A’ the matrix 4 is said to be skew
symmetric. Clearly (4') = A.

The following properties are basic:

(AB) = B'A’ (A.5)
(AB)™'=B14-1. (A.6)
We define the differentiation of A with respect to ¢ by the operation

i - (3)

dat ~ \ dt
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Since from (A.4) AA-! = I we have directly that if 4 = A(t) then,
denoting differentiation of 4 with respect to ¢ by 4,,

d
d -1y =
p7 (A4A1)=0
and so
Al=—A414,47! (A7)
and from (A.5) we see at once that
d
7 (AB) = BjA'+B’'A;. (A.8)

There is associated with the (n x n) square matrix 4 a homogeneous
bilinear form B(z,y) in the two sets of variables z!, 22, ...,2" and

YLy LY,

n n
B(z,y) = X X x'a;y. (A.9)
i=1j=1
If the variables are denoted by the column vectors
xl yl
x2 2
X= . and Y= Y
xn yn

then B(z,y) may be expressed in the form
B(z,y) = X'AY . (A.10)

In the event that X = Y the bilinear form B(x,y) becomes the
quadratic form Q(x,x) defined by

Qx,x) = X'AX . (A.11)

If T is a non-singular matrix then ¥ = 7-1X represents a coordinate
change and in the new coordinate system the quadratic form in Y is
associated with the matrix
B=T'AT
or
Qy,y) = Y'BY. (A.12)

A quadratic form @(x,x) is said to be positive definite if for every
vector X #0,
Qz,x2)>0.
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If the form changes sign for some vectors X it will be said to be
indefinite.

We state without proof that every quadratic form ¢(x, z) may, in a
suitable coordinate system, be represented as a sum of squares

Qx, ) = 0y (1) + ap(£2)2 + ... + o, (€7)7. (A.13)

Sylvester’s law of inertia states that the number of positive squares s
appearing in the canonical form (A.13) is invariant and independent
of the coordinate transformation used. Thus we see that for a
positive definite quadratic form @(x,z), it follows directly from
Sylvester’s law that s =n. By the statement that a matrix is
positive definite we shall of course mean that its associated quadratic
form is positive definite.

Since for a positive definite matrix 4 the numbers «; in (A.13) are
all positive, a further real transformation (y%)? = «,(£%)? shows that
(A.13) is equivalent to the canonical form with 4 =1 in (A.11).
Thus a positive definite matrix 4 may always be represented in the

form
A=TT. (A.14)

Let us now consider the n simultaneous equations
Ar = AB (A.15)

where A is an (n x n) matrix, r and B are column vectors, and A is a
scalar. If the n elements of r are considered to represent the compo-
nents of a vector in an n-dimensional space L, then Ar represents a
coordinate transformation of the vector r. By setting B=r in
(A.15) we are required to find the set of vectors r such that the
transformed vectors Ar are both parallel and proportional to r.
These vectors are called the eigenvectors of A and the corresponding
A the eigenvalues of A. So, setting B = r, we find from (A.15) that

(A=X)r=0. (A.16)

For these n homogeneous equations to be true we must have the

characteristic determinant
A=|A-MN|=0. (A.17)

Since, from the theory of determinants, we have that |C|=|C'|, it
follows at once by setting C = A—AI that |[A—Al|=|4'-)]|.
Equation (A.17) is a polynomial of degree = in A and has n roots (the
eigenvalues) A0, A A, The eigenvector r¥) corresponding to
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AY) satisfies equation (A.16) with A = A9, ie.,
(A=A )rd) =0, (A.18)

If the A9 are all real and distinct, the n eigenvectors r(1), 72, . r(n)
are linearly independent (i.e., ¥, 7 = 1,2, ..., n is not expressible as a
sum of multiples of " with j#1¢). The set of vectors {r'} forms a
basis of the space L to which they belong in the sense that all vectors
belonging to L may be expressed as linear combinations of the
vectors belonging to the basis. Clearly the basis is not unique.
Since ¢ post-multiplies equation (A.18) it is called the jth right
etgenvector of A corresponding to AY). Now consider the sth right
eigenvector m® of 4’ defined by

[4’—XO []m® =0 (A.19)

where, as we have seen, the eigenvalues of 4 and A’ are identical.
Taking the transpose of this equation and using (A.5) we obtain

m/O[A =D [] =0
or, setting I = m'®, we obtain
D[4 -XD]]=0. (A.20)

This equation is analogous to equation (A.18) but the row vector I(?
pre-multiplies the equation and so by analogy I® is called the ¢th
left eigenvector of A corresponding to A®).

As would be expected, an important relationship exists between
1% and r9). If the set of vectors {r"} is linearly independent then so
also is the set {I{)} and they are both bases of the space L. We now
show that the sets of left and right eigenvectors {I9'} and {r%'} form a
brorthogonal set.

Post-multiply equation (A.20) by ¢ with ¢ # j to obtain

16O[4 =\ []r6) = 0

or
16 4pG) — \@ [ p6) = (. (A.21)

However, by (A.18), Art) = X9 rt) and so (A.21) becomes
(AG —XD) @) ) = 0, (A.22)

Since we have assumed the eigenvalues to be distinct and @ +#j, it
follows at once from (A.22) that

1@y =0 for¢+j. (A.23)
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Since both sets of eigenvalues form bases of the space L, the IV
cannot be orthogonal to all the . Thus, since the cases ¢ = j are
the only remaining ones, we must have the result that

[ p) £0 1=12,...,n,

which establishes our result that the left and right eigenvectors of
a matrix are biorthogonal.

In the event that not all the eigenvalues A are distinct and A,
say, has multiplicity k, the notion of the k eigenvectors corresponding
to the k roots A = A) must be modified. To do this we introduce a
generalised right eigenvector »*) of rank k corresponding to A = A
by the requirement that

(A =AW [)e=140) £
and (A.24)
(A=A [yt = @,
We now define the k—1 other generalised right eigenvectors r¢
corresponding to A = A1) by setting

P = (A=AOT=ip) =12 .. k-1l (A.25)

To establish our claim that the ) so defined is a generalised eigen-
vector of rank j corresponding to A =AY we must show that
definition (A.24) is true for k = j.
To show this we use (A.25) in the expression (4 —A® I)i-17G) when
we see that
(A —=XD [Y=176G) = (4 — XD [)i=1(A — XD [ )i k)
or
(A —XO )i=150) = (4 — XD [yk=1 k)
so, from (A.24), we finally find that
(A =XV =170 20,

A similar argument shows that (4 —A® I)ir% = 0 and so we have
established our assertion that r) is a generalised right eigenvector
of rank j. That the generalised eigenvectors of different ranks are
linearly independent follows directly from their definition (A.25) and
(A.24).

The previously established relationship between the left and right
ordinary eigenvectors are true also for the generalised eigenvectors.
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THE RankiNe-Huconior RErLaTION (50)

The following relation across a shock is called the Rankine—
Hugoniot relation:

le]+[71{p>+4} =0 or [e+{p)r]=—[r]4 (B.1)

where A4 is an arbitrary non-negative quantity and the left member
of the second equation is the Hugoniot function of ordinary hydro-
dynamics. We assume the following basic physical properties of
gases: G,, Cy, Cy, G5, and C,.

C,: The pressure p, 0 < p <00 is expressible as a continuous single-
valued function of the variables (7,8) and of the variables (r,e);
specifically,

p=g(T’S)=f(7’e); OST,S<®,

where f and g are single-valued everywhere continuously differentiable
functions of the argument or, alternatively, + and p are expressible
as single-valued functions of the variables S and e and vice versa
throughout the admissible ranges and domains of the variables

involved.
) g
01 : (B_T)S <0
0%¢g
02 . (3-72—)3 >0
0
03 ('a—e . >0
and
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where ()g, etc., signifies that S remains constant, etc.; the entropy S
satisfies the thermodynamic law

TdS = de+pdr (B.2)
where 7' is the temperature and is positive.

Theorem B.1. The entropy increases across a shock if and only if the
density p increases across the shock; that is to say, the shock is
compressive.

Proof: The structure of the proof is as follows. It is shown that

(1) [r]< 0 implies [S]>0;

(2) [r] = 0 implies [S] = 0, and

(3) [r]>0 implies [S]<O.

Let (74, po) and (7, p,) denote the specific volume and the pressure
ahead of and behind the shock, respectively, and e, and e, the
corresponding specific internal energies. From C, we have the
functional relations

E 0 p= f (7, eo)

El: p=f(7'9el)

which are the two curves in the (p,r) diagrams passing through the
two points (74, po) and (7, p,), respectively (cf., Fig. B.1). Let 7] be
negative, then from (B.1) it follows that

e;—¢€,>0.

Consequently, by virtue of the assumption C;, for each » we have
f(7,e1) >f(7,€,); namely, that the curve E, lies above the curve E,,.

To establish statement (1) of our proof we must prove that the
entropy S, at the point (r,, py, ¢,) is larger than the entropy S, at the
point (74, pg, €5). To this end we consider the line 4, passing through
the point (7, p;,€;) along which the entropy is kept constant in such
a way that the change of pressure is simply given by

dp = dg = (%{)sdf.
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On the other hand, from the following general relations,

e (s (£ - (2 ()
) 3 () ()9
ORI

i (e =eo)
0 T

Fic. B.1. Curves E, and E, are graphs of the relation p = f(r, e) for the
fixed values of the specific internal energies e, and e,, respectively. The points
(71, 1) and (7, p,) represent the specific volume and pressure behind and ahead
of the shock. 4, is the adiabatic curve, p = g(r, s;), that passes through the
point (7;, p;). The proof consists essentially in showing that (g, pg), the point
of intersection of A, with E, lies to the right of (,, p,). This figure and form
of proof are due to Bazer and Ericson (50).

it is easily seen that

(), - 7(8),

(0,053,

an
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Hence, by virtue of C,, we obtain the inequality

(e),> G,

which immediately implies that for values of  larger than =, the curve
A, lies below the curve E, so that A4, intersects E,.

Let the point of intersection between the curve 4, and the curve
E, be (g, py) at which the entropy takes the value S,. Then, noting
that de = 0 along E, and using equation (B.2), we have

[8]= f o%d-r (integration along E).
Establishing that [r] <0 implies [S]>0 is thus reduced to proving
that 7; exceeds 7,. This can be seen as follows by comparing the
area under the curve A4, joining the points (r,,p,) and (7, pg) and
that under the straight segment joining the points (7, p;) and
(t0»Po)- The former is given by the equation

fopdr (along 4,, dS = 0) = —f "de = [e],
while from (B.1), [e] is larger than }(p,+ p,) (o—7,) Which is equal
to the latter area. Since the curve A, is convex downward (see C;
and (), this can be true only if 7 exceeds 7,.

To prove statement (2) we make use of the fact that e, — e, vanishes
when 7, — 7, vanishes. It follows from C, that [S] vanishes. To prove
statement (3), namely, that [r]>0 implies §<0, we proceed as
follows. We set

=1, To =75

Sl=S(’)k’ So=Sik’

and note that in this notation statement (3) is equivalent to [+*] <0
implies [S*]>0. The proof of statement (1) now applies to the
starred quantities and furnishes the desired result.

Corollary. Theorem B.1 remains valid when p ts replaced by e or p.

Proof: By virtue of (B.1) [p] has the same sign as [e]; the state-
ment for p follows easily from the relation

- (G-

and the assumptions C, and C,.
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THE BEHAVIOUR OF XF (49)

Let us first investigate the behaviour of X7 /h, with respect to A,.
As can be easily seen, C is zero at
_2siné,
=1
by equation (6.2.20), and hence X} becomes infinite there provided

B +VRy is not zero for h = h,.
Since Ry(k,) is equal to B2(k,) (= B?), if

hi=/

Bsyzlsinzoo—(l—so)zo, (C.1a)
that is, if
sinZ6
§g=21—yp—-2, C.1b
then X} becomes infinite at h = h,.

_Moreover, it follows easily that for A < h,, C is positive and
VRx>|B| and hence (S.5), is satisfied by X;, while for h,> %, the
condition (C) is violated.

Therefore, for the configuration in front of the shock satisfying
(C.1) and for the jump corresponding to X, k, must be in the range

0<h<h,.

According to Bazer and Ericson we call a shock satisfying (C.1) a
type-(1) shock, while the shocks corresponding to the positive and
the negative signs of the root will be called the positive and the
negative branches, respectively.

We next consider the case, in which

Bsyzlsinzﬂo—(l—so)<0, (C.2a)
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namely

sin2d,
(y-1)°
The shock satisfying the above condition will be called a type-(2)
shock. By virtue of the same reasoning as was used for the type-(1)
shock, in the type-(2) shock (8.5) is still valid for the values of
hy< ﬁ, and, moreover, X} is finite and continuous at z, = fa so that
it can be extended to the range h;>h, Let us determme an upper
bound for this range by finding the maximum value for which

Ry>0. RY

To this end we note that as k; increases from h,, B increases mono-
tomcally and becomes zero at a value h; = 2(1—s,)/ysinf,, while
Ry is positive at fa and decreases monotomcally, becoming negative
at h;. Hence, between fz and h; there is a root of the equation

Ry =0, say ﬁ,, which should be 1dent1ﬁed as the upper bound. By
solving the above equation which is a second order algebraic equation

for h;, the expression for ﬁ, is obtained uniquely as follows:

So<l—y

(C.2b)

§ _ [sin6y(2—) (1 +84) + 208 8,4 (y — 1) (1= 80)% + 54 y28in? 6,
! (2(y —1) — y%sin?6,)

(6.2.21)
if and only if}
(y=1)

.)/2

sin?f,< 4

We note that for the type-(2) shock the above condition is valid for
the values of y < 4.

We thus see that in the range b, <k, < I‘Ai, both C and B are negative
and Ry <|B], so that the condition (S.5) is still valid. Therefore for
the type-(2) shock and for the choice of X}, the admissible range of
h; is

0<h <h,.

Finally we investigate the behaviour of X7. It is obvious that in
the range 0 <h <k, the condition (S.5) for X; does not hold; while
for the values of h, > h,, from the same argument as was used for X}

t If this inequality is not valid, the equation may have two positive roots

[see equation (6.2.17)] and another root may be identified with ﬁ, so that the
expression is not unique. However, this arbitrariness occurs only for the non-
physical values of y> 4, and may be discarded.
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it can be seen that the upper bound is still given by 7», and that the
condition (8.5) is valid. Therefore, for the negative branch, z; must
be in the range A, <h, sﬁ, and we have only the type-(2) shock.

Since Ry is zero at i,,, it follows that the curve of X;/k; joins the
curve of X}/h, smoothly there if the condition (C.2) holds for X7.
So, in order that the condition (C) is fulfilled, the negative branch
must belong to the type-(2) shock. In other words, for the type-(2)
shock a value of 4, in the range 0<%, <}, gives a unique value for
X7 (k); however, in the range ﬁ,sh,sfz,,, there are two values of
X,, X}, and X7, corresponding to a single value of A,. It is also seen
that in this range X} <X;. The behaviour of X7 is illustrated in
Fig. 6.4.
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SHOCK RELATIONS

THE GaAs SHOCK

1 y—1 2
Y=Lr P e YT e 2
Do T o 2 y+1° 7 Ty
y=@=y_1) = [Pl _ -1, ¥, =v,—A
y K Po K " "
n is the unit vector directed from ahead of to behind the shock.
_a1="
_1—1/27]

(1=v®) oo
2 — Y2 £0°9
[vn] - Y Y+V2

Y = (14+9%) (B,0/a) —?

Gas SiMPLE WAVES
Y = 17')'

[0,]2 = y*2yropo(1 — V0 ¥)?

HYDROMAGNETIC SHOCKS

—H,
hy = h = v
! H, Po

s = #ﬁm = fBcos?d, H, = Hcosd

334

W=—hg, G =1 lel, on=Y=[_5:]
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Fast SHOCK (0<0,<90°)

(¢) T.1. THE TYPE-(1) SHOCK:

. 2 .
7_/ ; sin?f,, O<h,<h, (iz, = sin 00)

Sg=>1—
0 y y—1

_ _h{—%yh,sin(?o—(l—So)""/R(hf)} o2
1= 2sy8in 0y — (y—1) h, o My

(8.1)

_ Y[ 130 2'yh/sm0 —(1—s,) +«/R } _
Y’_so{ 3hj+ by 2sinfy— (y—1)h, ’ P e =

(S{V.2a)
el v
T (53)
Ui e (ﬁ;/hi’; Sin 6,11 (5t

R(h;) = B3[}y*sin®fy— (y — 1)1+ h,sinfy(2 —y) (1 + )
+4s,8in20+ (1 —50)2  (S;.6)

(¢2) T.2. THE TYPE-(2) SHOCK:

Y
Sg<1—
0 y—

i sin?d,
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(a) The Positive Branch: 0<#h, < ﬁ/ [7;, > iz,, see equation (6.2.21)]
— _ g [~ 3vhysindy—(1—s,) +VR(k)
=" 25,80 6, — (y— 1) b,
yh,sin 6, — (1 —s,) + VR(h,)
28inf,— (y— 1)k,

(S?“.l)

Y, = SZ{ -%hgwﬁ } (SEH.2a)
0

Y] _1p2 (17;/hy) —sin 6, (@)
¥, = so{ ihj+y 1 — (4,/h,) sin 8, (S¢.2D)

The quantities 97, /b7, [v}]/b},, and [v]]/b}, are as defined above in
equations (S,.3), (St 4), and (St 5), respectlvely

(b) The Negative Branch: h, <k, <k,

- — lyh,sin 0, — (1 —s,) —VR(k,) i

- Ve 2 ! (2-)

”’l/—h,{ 2s,8in 0, — (y—1) &, } (82).1)
=Y i Mrsin(’o—(l—so)—«/R(h,)} .

Y, 8 { bhj+hy 2 o b=y —1)h, (S{z-).2a)
= Y] _1g2 (ﬁ//hf)—sin 00 } @

g so{ 2h/-l_h’l— (7,1, sin 6 (S§2).2b)

The quantities #,/b],, [v]]/b},, and [v/]/b}, are as defined above in
equations (S;.3), (S;.4), and (8,.5), respectlvely.
SLow SHOCK: 0<hA,< sinf, (0<6,<90°
- _ (1—s,) — 3yh,sin O, + v R*(hy)
s = N (y—1) hy+ 2s4s8in b,
7 - z{—(hs)2+ A [(1—so)+%yhssin00+JR+<hs>“ 8.2)
s 8

S osl 2 2sinf,+ (y—1) A,

1 _ L %o _ 1
bs - nl/2 bs - [1+ (7,/R,) sin 00]1/2 (Ss.3)
] _ - s

= = — - 4
bs s b, [1 4 (7,/h) sin 6,172 (Se4)
] _ b5y Ay _ by 12
bs ¥, m = T cos [1 +( ns/h sin 00] (Ss'5)

Bt (hy) = k3 [1y*sin? 6, — (y - 1)] —hysin (2 —y) (1 +5)
+4sy8in2 6, + (1 —s4)2 (S,.6)

hg = sin 6, corresponds to the switch-off shock.
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SwircH-ON SHOCK: sy = <1
2(1—s,)

0<% <Ny = 7+ Sw.0a
. My S Tere = 2 ( )
ie.,
0<F<¥,, = 217:?0)) (Sw.0b)
2 - ()’ - 1) =
B =27, |(1—s) =25 =7, . By>0 (Sw.1)
—1)_
7, =i [14+ 255 (Sw.2)
(o] = —bno [17” 2 te] (Sw.3)
[vy]y = bnony 2Ry (Sw.4)
Upy = by (Sw.5)
Tpo>bpo> a4 - (Sw.6)
HypromaeNETIC SIMPLE WAVES
O R
b2’ a? a_=ctlat<1
g _ (a*B-1) «__Y
do 7 (a—1)"’ [ (2—7) (R.1a)
%, = |o¢i—1|‘7'Bi'y*foc2i|ai—1|_(1+7')do¢i (R.1b)
850y = e_f V2 g—4(+1/7) 4B (R.2a)
Y
850, = _e_ﬁg §(1+1/y){\/(0& - Biilﬁ 1); sgn (H,o H,)dp
+
(R.2b)
1 the wave propagating in the positive direction along
_ the z-axis
B —1 the wave propagating in the negative direction along
the z-axis
o, —fast wave
a_—>slow wave
— -1
H, = H,sgn(H, H,) A/ (g 1)05%/3 ). (R.3)
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TRANSVERSE WAVES AND SHOCKS

[v,] = Fsgn(H,)[b]

with
b= s/,u/4mp H
and
(] =[p] = [S]=[H?*] =[v,]=0.
CoNTACT SURFACES AND ENTROPY WAVES
For H,#0
[vI=[H]=[p]=0,

and for H, =0

[va] = [p*] = 0.
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THE REPRESENTATION OF THE
HyproMAGNETIC EQUATIONS
(t) THE MATRIX EQUATIONS

The matrix form of the characteristic equations (4.3.1) to (4.3.4)
is (48)

S8V =0 (1)
where
adp/p
dv,
v,
-
8V = A/477'p 8H, (2)
8v,
-
Jisom
N .
and
_ 0 A
Pslp
0
<,
o = 0 (3)
0
0
000000 0 TFc,|

339
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in which
r Fec, a 0 0 0
a F¢, O b, 0
0 0 Fec, —0b 0
Mo — n n
0 b, -b, Fc, O
0 0 0 0 ¥,
. 0 b, 0 0 —b,
with
—At+v, =Fec, (¢, >0)
and
v
bn,y,z = Zﬂ'—/’ Hn,y,z .

The Representation of §F

APPENDIX E

(a) Fast Disturbance c, = ¢, [Equations (4.3.19)]

87(,;) =€

a
+ Cs
Fb,byc/(ci—b)
b, c%/(c? —b2)
Fb,b,c,/(c;—b2)
b,c3/(c3 —b3)
0

(5.£)

where € is an arbitrary scalar. The + or F signs correspond to the
T signs of ¢, in equation (4).

(b) Slow Disturbance ¢, = ¢,

87, = &V(c,~c,)

(5.8)

where ¢;— ¢, denotes the replacement of ¢, by ¢, in equation (5.f).
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(¢) Transverse Disturbance ¢, = b, [Equations (4.3.22)].
- 0 -

0
Fsgn(H,)(nxb),
§VH = (nxDb), where sgn (H,) = {

T sgn (H,) (n x b),

(nxb),

0

The T signs correspond to the T signs of ¢, in equation (4).

1,H, >0
-1,H,<0.

(5.2)

(d) Entropy Disturbance ¢, = 0

H,+#0:
- —psl(ap) T
0
0
Mi=e 0 (6.a)
0
0
| 1 -
H, =0
[~ —(ap)™ (psey + (u/4m) H- Ke) 7]
0
e,
0,0 = £, Z:—p (6.b)
et,
eK, Zi;—p
. € .

where e and ¢, are arbitrary scalars and K and ¢ are arbitrary

vectors such that

t=1(0,2,t), |t/=1
and

K = K(0,K,,K,).
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(¢¢) THE MATRIX REPRESENTATION OF THE
LUNDQUIST EQUATIONS IN ONE SPACE

VARIABLE ¥

We have the equation

where
and
A=
A P 0
@p) v, O
0 0 vy
0 H, -H,
0 0 0
0 H, 0
|0 0 0

V+AV, =0
P
Vg
Yy
V=| H,
vz
2
S
0 0
H,|(4mp) 0
—pH,[(4mp) 0
Vg 0
0 v,
0 —H,
0 0

0
pH,|(4mp)
0
0
— pH,[(4mp)

(%

T

0

0

Ddlp

0

(7.¢)

The eigenvalues of 4 are v, +¢;, v, *¢, v, +b,, and v,. The corre-
sponding right eigenvectors are r{*), 7{¥), 7{P), and r,, , (Where the ¥
signs correspond to the + signs in the expressions for the eigenvalues,
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respectively) with

P
te
Tb,byc/(ci—b2)
r‘ﬁ’ = H, c%[(c?—b2) (8.a)

Fb,b,c/(ct—b2)
H,c}/(c}—b3)
0

) =¥ (e, >cy) (8.b)
and
- 0 7]
0
Fsgn (M) (nxb),
e = (nx H), (8.)
Fsgn(H,)(nxb),
(nx H),
0

where n is the base vector of the x-axis.

H, #0:

_ps/a’2 7]
0

0

Por = 0 (8.d.1)
0
0

1
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"~ (Pser+ (n/4m) H-Ke)[a? 7]
0
et
Te2 = K,
et,

eK

Zz

Y

(8.4.2)

€ .

The Connection between A and &/
Let w;, © = 1,2,...,7 be such that

(), ().

then (3V [ox); = wy(8¥|ox); and Ay = w; A;;w;t, where 4 is derived
from & by replacing Fc, by v, ie, 4 =(Fc,—>v,). Hence
) = w, 8T, ; where « denotes f, s, a, and e.

(717) THE CONNECTION WITH THE
CONSERVATION LAW

When the conservation law is given in terms of U(V) by

U+F{U),=0
and so
U+MU, =0 with M =V,F,
we have
M=W-14AW
where
W=V, U  when Wik=%.
0vy,

Hence the eigenvalues of M are equal to those of V, i.e.,

v+, v, tC, v, tb,, and v,.
The corresponding eigenvectors R{*', R(*), R{*), and R, , , are given by
R = Wri®), ...

and consequently
VoAr =V, AR. 9)
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Theorem E.1. The transverse waves and the entropy waves are
exceptional, whilst the magnetoacoustic waves are not exceptional.

Since, for A = v +b,,
VoA = (+0b,/0p,1,0,0,0,0,0),

it follows immediately from (8.c) that V,A-r{¥) = 0. Similarly,
for A = v,,

V,A=(0,1,0,0,0,0,0),
when it is evident from (8.d) that V,A:r,, = 0. It is a straight-
forward matter to prove that magnetoacoustic waves are not
exceptional.

Theorem E.2. For magnetoucoustic shocks the evolutionary condition
implies the entropy condition (88). The reverse statement is, however,
not true.

Proof: The evolutionary conditions for magnetoacoustic shocks are

Bpo>Co5 by <Tp<cp for fast shocks
and
bro>Tno>Cop » Ty <Cq for slow shocks

and hence they are genuine shocks; moreover, magnetoacoustic
waves are not exceptional. Therefore, as was shown in Section 3.5,
the theorems proved by Lax are valid. In particular there exists a
parameter e of a definite sign, in terms of which U, is connected with
U,. We now show that the parameter ¢ may be taken as the jump of
the transverse magnetic field. It is obvious from equations (6.2.15)
to (6.2.18) that p,, P, vy, v,,, and X are determined in terms of & and
that at A = 0 they are differentiable many times with respect to A.
On the other hand, as was also proved by Lax and explained in
Section 3.5, € takes the opposite sign for a centred rarefaction wave
or, equivalently, since the shock can be formed, the sign may be
determined by that of a compressive simple wave just before the
formation of the shock. Hence in the present case we have

for the fast shock h>0
and for the slow shock h<0.
Equation (6.2.18) and the evolutionary condition imply that

7/h>0 for the fast shock

and
k<0 for the slow shock.
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Accordingly it follows that
7>0.
Therefore, in view of Theorem B.1 in Appendix B we may conclude

that
[S]>0.

It has been proved by Russian authors (44, 66, 74, 84) that the
reverse statement is not true (see Chapter 6).

It should also be noted that for shocks satisfying the inequalities
€1 < D1 <byys byg <¥pg< ¢y, which admit 6 (= n— 1) outgoing waves
the kth family of characteristics in Section 3.5 becomes the Alfvén
family of characteristics and consequently is exceptional.
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CoNTACT TRANSFORMATIONS AND THE
LEGENDRE TRANSFORMATION

IN THE PREVIOUS CHAPTERS we have often had occasion to use
coordinate transformations of the form

of = af(x0,xl,...,x™), 1=0,1,...,m
mapping a hypersurface % defined by the function
U=U@2al,...,2™)

in the independent variables 20, z1, ..., 2™ into a corresponding hyper-
surface ¥ in the independent variables o« ol,...,a™. Such trans-
formations are called point transformations since they map a point P
of & into a point @ of . A more general type of mapping would be
the establishing of a correspondence between a surface element of &
and a surface element of X. The hypersurface ¥ may thus be
regarded as the envelope of a family of hypersurfaces #”, all of which
make tangential contact with &. A description of % could then be
given in terms of the parameters defining the family &%’. We now
consider from amongst these correspondences or transformations that
class which have the property that they map two hypersurfaces
& and &' tangent at a point P into two hypersurfaces £ and X’
which are tangent at a point P’, the map of P. Transformations of
this type are called contact transformations and are particularly useful
whenseeking to transform certain types of partial differential equations
to a new and essentially simpler form as will be shown later by
example.

First, however, to illustrate ideas, let us consider a simple curve C
defined by the function of one variable y = f(x), and a mapping of
the points P of C' by means of a transformation which depends on
both the point P and the tangent to C at P. Such a mapping may

347
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be described by the transformation

o= a(x,y,g—y) and B = B(x,y, Z—‘Z) (F.1)

X

which maps C onto a curve I' in the (a, 8)-plane. Writing p = dy/dz,
the slope of the transformed curve I' at P’ (the map of point P)
may be written in terms of the curve C as

B B, Bdp
(@) TP opdx F2)
do T(P’) B Zi_a O Badp ) )

dx oyt " Op da/ cp)
Now consider another curve C’ with map I' in the (a,B)-plane
chosen such that ¢’ is tangent to C at point P. Then although in
the (a,B)-plane I" and I"" will have a common point P’, I will not
necessarily be tangent to I" at P’ as we see by calculating (dB/da)r ),
for in general dp/dx will be different for C and C’.

However, if the expression involving dB/da depends only on z, y,
and p and is independent of dp/dx, the curves I' and I'V will always
be tangent at P’ as is required for a contact transformation. To
determine the form of this condition we need only perform the
division on the right-hand side of (F.2) when, for df/d« to be indepen-
dent of dp/dx, we must have

oo (0B 0B 0B (0o O

i et ay?) = Gt ?) (£:3)
Thus condition (F.3) must be satisfied in order that the transforma-
tion (F.1) should be a contact transformation.

As a particular case of these transformations the curves C' may
be taken to be straight lines and defined in terms of their slope p
and their intercept on the y-axis which, for reasons of notation, we
shall denote by — X(p). Elementary geometry then shows that in
the (x,y)-plane the tangent line is

y=—X+px
or
X=px—y.

Regarding X as a function of p we may represent y = f(x) in the

(p, X)-plane by setting

dy
p=4 and X=px—y. (F.4)
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Differentiating X with respect to p gives
aX dx dy_

dp ~“TPapap
or, since
dy dydx dx
dp dadp Pap’
we have the result
aX

and so from (F.4) and (F.5) we see that
=g and y=pg—X. (F.6)

dp

Inspection of (F.4) and (F.6) shows that the transformation is
involutory in the sense that two successive applications of the
transformation will return us to the original coordinate system and,
furthermore, that the transformations (F.4) and (F.6) satisfy condi-
tion (F.3) and so define a contact transformation. This particular
transformation is the simplest example of the contact transformation
called the Legendre transformation.

To see the use of the Legendre transformation we now extend it to
functions z = f(x,y) of two independent variables which are deter-
mined as the solution to a partial differential equation. By analogy
with the previous example we describe the function z = f(z,y) in
terms of the family of its tangent planes which may be characterised
by their slopes

£= g—; and g = 33—; (F.7)
and their intercept on the z-axis which we again denote by — X(¢,7).
Again, using elementary geometry, the tangent plane at a point of
the surface z = f(x,y) is

z=¢x+ny—X
or

X=¢tortny—=z. (F.8)

Differentiating X with respect to ¢ we obtain

o~ T Y I TR F T
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which, by virtue of (F.7), reduces to

0X[0¢ =« (F.9)
and, similarly,
0X|on=y. (F.10)

The Legendre transformation then amounts to the introduction
of £ and 7 as independent variables together with the new function
X(&,7) related to z = f(x,y) by the expressions

0X 0X
== = . 11

& VT (F.11)

To apply this transformation to a first order partial differential
equation we combine (F.7) and (F.11) to obtain the following
substitutions for z, y, 2, 2,, and 2, in terms of £, 7, and X:

0X 0X X 00X

x=a—§, y=_a-‘;7—, _§_5§+’775;,'_

X=(x+my—2, =«

X,
(F.12)
2z, =€, and z, =1,

which gives the equivalent partial differential equation in (£, 7, X)-
space.

To see how this may be applied to a second order partial differential
equation we must first obtain the corresponding expressions involving
Zzzs 2y a0d 2. This may be achieved very simply by applying the

identities
L@@
36_(3§ Oz (3§ oy
(@) i)
on  \on) ox (37] oy

to the expressions for ¢ and 7 contained in (F.7) and using (F.9) and
(F.10) to obtain

and

1 = zzz ng + zzy XE'I
0 =2, Xee+2, X,

0 =2, X, +2,, X,
and

1 =2,, X, +2,X,,.
Provided the Jacobian ! "

j =2y zyy_ziy (Fl3)
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of the transformation is non-vanishing these equations may be solved
to obtain

2ox = JX

S Zay = —JXgy and 2yy =JXg.  (F.14)

Hence to apply the Legendre transformation to a second order
partial differential equation we must use the substitutions

X 0X 0X 00X

Tt VT ity Tt
02X .0t X
2, = ¢, 2y =M, zza:=]a—nz’ za:y=_.7m
and
02X
z’”’='7—3? (F.15)

to obtain the equivalent partial differential equation in (£, 7, X)-space.
As a further application of the Legendre transformation we
consider a two-dimensional vector field v governed by the equations

Vxf(v)v =0 (F.16a)
V.glv)v =0 (F.16b)

where v is the absolute value of v and f and g are scalar functions
of v alone. Introducing a vector u through the equation

u=f)v

we easily see the existence of the potential functions ® and ¥ given
by the equations

o0 o0 ,
ux=a—x', uy——a; (F.lGa,)
P o ,

in which u, and u, are the x- and y-components of u, respectively; its
absolute value will be denoted by u, and A is given by

h=g(v)/f(v).

From equations (F.16) and (F.16") we have the following equation

for @:
(a—¢>§)<1)u—2<I>x¢>yd>w+(a—¢>§) o, =0, (F.17)
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cmip i ke (B (B,

and « will be assumed to be finite.
Applying the Legendre transformation (F.15) and assuming
j#0, we obtain the transformed equation

where

(x— £?) XM+ 2577X5,’+ (x—m?) ng =0, (F.18)

where u, and u, are denoted by £ and 7, respectively. Consequently
o is a function of (£2+7?)!/2 alone and X takes the form

X=¢x4+my—0.

Any solution X(£,7) corresponds to the solution u,(x,y),u,(x,y) in
the physical plane provided the Jacobian J is such that

JEXﬁXmI_X.Ezﬂ =TeYy— %Y

does not vanish.

Equation (F.18) is a linear equation for X; hence if several
solutions are obtained we may use the principle of superposition
to construct a manifold of solutions. However, this advantage is
somewhat lost by an increase in the complexity in the boundary
conditions since the transformation of a boundary in the (x, y)-space
into the hodograph plane depends, in general, on the solutions
£ and 7.

It also follows that equation (F.17) is elliptic or hyperbolic
according as a(u?—a) <0 or > 0, respectively. If o> 0, then equation
(F.17) is elliptic for |u|<al/?2 and hyperbolic for |u|>al/2. For the
elliptic case the Jacobian j does not vanish because of the relation

(x— u?;) (I)g:y —2upu, Oy Oy + (e — uz) D, = (a— u?/) ((I)E:y -0, 0,);
however, in the hyperbolic case the Jacobian may change sign.

It can also be proved that this is true for J. Finally we present
the useful relations

E¥ e+, +h(n®,— £D,) = 0
and
ho(§@;+n®,) + (w? — o) (¥ — €F,) = 0,



CONTACT AND LEGENDRE TRANSFORMATIONS 353

which are obtained by eliminating ¢,, ,, &,, and 7, from equations
(F.16) on the basis of the relations

O &, +D, 7, = €, etc.

In terms of polar coordinates in the (¢, 7)-plane introduced through
the equations
E=ucosgp, 7 =wusing,

these relations take the form
w¥, = hd, (F.19a)

and
hu®, = (u?la—1)¥, ; (F.19b)

9_ ?B)ﬁ
ou~ \ou) ov
these equations may easily be written in terms of v and ¢. The

equations for ® or ¥ alone follow directly from equations (F.19)
and are expressed in terms of v and ¢ as follows:

and by using the relation

(.u;/‘%_l) ®,,+ (uT’/:‘Fi_l) ®,— (h/F)®,, =0  (F.20a)

and
u?/a—1

(Foll) ¥t (Fofh) ¥, = (S

)‘FW =0, (F.20Db)

where F = (u/v)(dv/du) and the prime denotes differentiation with
respect to v. The connection with the physical plane is given by
equations (F.12) or by the equations

de = u~lcospd® — (hu)-lsinp d¥ (F.21a)
and
dy = ulsingd® + (hu)lcospd¥, (F.21b)

which are the immediate consequence of equations (F.16’). Instead
of solving equations (F.18) and (F.12) we may solve the system of
equations (F.19) and (F.21).

Corresponding to the transformation function X for ® we can
similarly introduce a function Y for ¥'. A system of equations for X
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and Y in terms of u and ¢ that is similar to (F.19) can then be
derived.

Examples

(¢) Isentropic Plane Irrotational Flow in a Compressible Fluid

The system of equations is given by equations (2.1.26) and (2.1.27),
which are equivalent to equations (F.16) with

f=1 and g=p
provided p is related to v through Bernoulli’s equation
(v?/2) +a®(p)/(y — 1) = constant. (F.22)

By means of this equation we have dp/dv = — pv/a? and as a result «
reduces to a?.

This case has been discussed at length by many authors; as for
example the article by Kuo and Sears contained in (10).

(¢7) Plane Aligned—Field Flow in Magnetohydrodynamics

The system of equations is given by equations (8.1.1) and (8.2.2)
and consequently we have

f= 1-4-2= l—ﬁp
g=p
h=pl(1— 4%
whilst p is connected with v through equation (F.22). The relation

u? = (1— A-2)2p2
implies that

du ~ (A2—1)(M2+A42-1)

dv A4 u
v

and so « is given by the expression

a=(1—A"2)2A-2(M?2+ A2 —1)a?
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and equations (F.19), (F.20), and (F.21) take the form
od (4%2-1)2 v ¥

9o ANAT+ME—1)p Bv
80 (M2-1)(42—1) ¥

o A2 pv O0p
(424 M2—1] 30 2o
1— 2)2 — 2
(1= e S e (L My (A1)
Iy (42— 0 -1 222
[42+M2-1]* * ¥ i 4
M2 — 2 __ 2 2 __ -
( 1) = W — (A1) (A2 + M2 —1)
{14+ ) (42— 1= My AP- 1)+ 1347 L OE g
1 2 sin ¢
doe = [Az cospdP——= . d‘I’]
_1[cosep A4z | .
dy_;[ A a¥ + T smgpdd)] .
The Jacobian J is given by
_3_(_x,y)_ 1 2 o (AP—1)2% oy
a(v,gp)-,,z—w[(M Aty ekl B

A detailed discussion of the solutions for y =2 as well as the
special solutions ® ~¢ and ¥ ~ ¢ has been given by Seebass (83).
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conservation laws, generalised, 116
integral form, 111
magnetohydrodynamic, 214 ff
mass, momentum and energy, 57
symmetric hyperbolic, 152

conservation of magnetic flux, 225

constant state line, 87

constitutive equations, 49, 167

contact,
discontinuity, 136, 160, 218, 249, 252,

255
layer, 213
surface, 60, 109, 176, 289, 338
transformation, 347 ff

continuity,
equation, 169
Lipschitz, 27, 39, 100, 103

contraction mapping, 20, 21, 99

convergence,
in the mean, 121
strong, 121, 123
weak, 121

Courant, method of, 142 ff

critical,
point, 106, 109
speed, 304, 307
time ¢, 100, 104, 107

crystal optics, 53, 185

cusp, 72

Derivative,
directional, 10, 33, 66, 81, 146
generalised, 118
determinant, characteristic, 34, 324
determined system, 29
diadic product, 58
diagonalising matrix, 96
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ward, 143
differentiation,
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of a matrix, 322, 323
directions, characteristic, 14, 36, 143
discontinuity,
development and propagation of, 90,
100 ff
exceptional, 128, 129, 134, 250, 345
propagation of weak, 149 ff
spatial, 47, 52, 61, 186 ff, 293 ff
static case, 317 ff
weak, 260
displacement vector, electric, 168
divergence condition, variational, 191

INDEX

domain of dependence, 9, 15, 99, 142, 144
existence and uniqueness, 21, 24
double layer shock, 258

Eigenvalues,
multiplicity k, 326
of a matrix, 324
redundant, 38
eigenvectors,
generalised left and right, 326
jth right, 325
left, 66, 75, 325
of a matrix, 324
right, 87, 92, 325
electromagnetic,
field equations in a conductor, 168
polarised waves, 55
scalar potential, 50
transverse nature of waves, 49
vector potential, 50, 196
elliptic equation, 6
elliptic-hyperbolic, magnetohydro-
dynamic flow, 187, 311
energy,
internal, 58, 169
total, 57, 169
entropy,
condition, 115, 122
disturbance, matrix
341
increase across shock, 328
jump in fast shock, 230
jump in slow shock, 239
simple wave, 203
entropy wave,
degenerate, 177
exceptional, 345
envelope, of discontinuities, 72
equation, of mixed type, 6
equi-pressure surfaces, 318, 319
evolutionary,
discontinuities, 128
weakly, 258
evolutionary condition, 125 ff
and fast shocks, 231
and gas shocks, 137 ff
and slow shocks, 234 ff
in magnetohydrodynamies, 218, 220 ff,
256 ff, 345
exceptional case, 100, 107, 110, 213
exceptional system, 90, 106
expansion ratio, 156, 158
in magnetohydrodynamics, 194

representation,
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expansion wave, 73
and initial discontinuity, 74

Fast disturbance, matrix representation,
340
fast shock, 217, 218, 219 ff, 224, 227 ff,
259, 264, 269, 313, 335 ff
and Alfvén shock, 220
dependence on parameters, 232, 233
90° limit, 247 ff
type (1), 229, 240, 335
type (2), 229, 241, 335
fast wave, 173, 183, 184, 205, 208, 295,
304
simple, 203, 210, 212
field, divergence free, 112
kth, 89
finite difference equations, 143
along characteristics, 146
finite discontinuity, propagation, 90 ff
first order quasi-linear systems, 24 ff
and Cauchy problem, 40
fixed point theorem, 21
flow,
aligned-field, 354
homentropic, 299
incompressiblemagnetohydrodynamic,
198
isentropic, 71, 91
isentropic and irrotational plane, 354
non-isentropic, 58, 92
past a conducting convex wall, 309
past a sharp corner, 297, 312
steady supersonic, 76
fluid motion equations, 169
fluid pressure, 176
flux,
magnetic, 225
scalar, 111
free surface, 62
Fresnel equation, 54
Friedrichs diagram, 181 ff, 186
frozen-in condition, 197, 198, 210
functional, linear, 117

Gas,
basic physical properties, 220, 327
dynamic conservation laws, 135
shock, 136, 244, 258, 265, 334
simple waves, 334

Gaussian units, 167

genuinely non-linear, 91, 121

Goursat problem, 17

365

Hamiltonian, 42, 46, 184, 193
Hamilton—Jacobi equation, 42, 184
heat,

conduction coefficient, 58

equation, 58

flow vector, 169
hodograph,

plane, 303, 352

transformation, 80, 299, 302, 352
homentropic flow, 299
homogeneous hyperbolic equations, 66,

Hugoniot function, 217, 327
hydrodynamic contact discontinuity, 138
hydrodynamics, basic equations, 57
hydromagnetic,
equations in matrix form, 339 ff
shock relations. 334 ff
simple waves, 337
stability, 320
hydrostatic pressure, 63
hyperbolic,
totally, 37, 38, 94
ultra, 37, 38
hyperbolic equations, 6, 37, 66
normal form, 7, 17, 19
symmetric, 153
hyperbolic-fast, 315 ff
hyperbolic-slow, 315 ff
hyperplane, 33

Identity matrix, 322
incompressible,

fluid, 61

magnetohydrodynamic flow, 198
indefinite quadratic form, 324
indeterminacy of normal derivative, 34
initial,

curve, 16

data, 9

interval and boundary values, 98

point, 208

value problem, 24
integral,

curves for magnetohydrodynamic flow,

205, 206

equation, solution by iteration, 21
intermediate discontinuity, 129
intersection of characteristics, 70, 72,

103
invariant,

measure, 196

transformation, 218
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inverse matrix, 322
involutory transformation, 349
isentropic,
flow, 71, 91, 105, 294, 354
spherical flow, 108

Jacobian, 67, 101, 352
Jacobi’s theorem, 155
Joule heating, 244
jump,
discontinuity, 113
in variational quantities, 151
jump conditions,
across wavefront, 4, 5, 102, 107
and evolutionary condition, 226

Klein bottle, 319

Kronecker delta, 46

kth Riemann invariant, 87, 88
kth simple wave, 87, 88

Lax’s condition, 125, 128
and gas shock, 138
left eigenvector, 66, 75, 325
Legendre transform, 311, 349 ff, 351
and potential flow, 352
limit,
shocks, 238 ff, 258
strong, 121, 123
0° fast shock, 240
0° slow shock, 247
90° fast shock, 247
90° slow shock, 247
weak, 121
limiting operation in %, 102
linear equations, 3, 29, 32
linearly independent eigenvectors, 325
Lipschitz continuity, 27, 39, 100, 103
Lorentz,
body force, 168
transformation, 51
Lundquist equations, 171

and steady spatial discontinuities, 317 ff

isentropic flow, 189

linearised one-dimensional, 221, 342 ff

Mach,
angle, 78

fast and slow wave, 295, 297, 302, 305,

307 ff
lines, 77
number, 77, 295
wave, 60, 186, 293, 297

magnetic,
lines of force and properties, 195 ff
pressure, 176, 204, 210, 297, 319
Riemann invariant, 207
stress tensor, 169
surfaces, 318
magnetoacoustic waves, 174,222, 223, 345
and Alfvén shocks, 281
combination and interaction, 280 ff
shock, 261, 345
simple, 203, 204
magnetohydrodynamic,
basic assumptions, 167
characteristic equations, 172
conservation laws, 214 ff
elliptic-hyperbolic flow, 187, 311
evolutionary conditions, 218, 220 ff,
256 ff, 345
incompressible flow, 198
mechanical relations, 216, 219, 226
orthogonality relation, 192
piston problem, 259 ff
Rankine—Hugoniot relation, 217
reducible flow, 188, 201, 202, 253
Riemann invariant, 199, 207, 208,
259, 299, 303
Riemann problem, 276 ff
space-time scale, 167
steady flow, 293
symmetric hyperbolic equations, 173
waves, 174
manifold, 65
normal to, 33
mapping, C'¥) and I''# characteristics, 69
matrices,
basic properties, 321 ff
conformability of, 322
diagonalising, 96
differentiation of, 322, 323
eigenvectors and eigenvalues of, 324
product of, 322
sum of, 321
transpose of, 152, 322
Maxwell equations, 48
mechanical pressure, 210
mechanical relations,
in gas dynamics, 136
in magnetohydrodynamics, 216, 219,
226
metric space, complete, 20
mixed boundary and initial value
problem, 17, 94 ff
momentum equation, 169
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Navier—Stokes equation, 62
negative branch shock, 229, 231, 331 ff,
333, 336

net points, 142

node of integral curve, 206

non-characteristic curve, 13

non-compressive wave, 175

non-evolutionary shocks, 258

non-isentropic flow, 58, 92
generalised Riemann invariants, 93

non-linear string, 74

non-magnetic shock, 242

non-singular matrix, 322

normal velocity, 42, 43, 50

normal velocity surface, 44, 46, 178 ff

null matrix, 322

Oblique shock waves, 311
Ohm’s law, 168
one-parameter family, 131, 149
optical axis, 56
optics, geometrical, 40
orthogonal complement, 89
orthogonality,
of C'#) and I''¥) characteristics, 79
relation, 153, 157, 161
relation in magnetohydrodynamics,
192
outgoing waves, 125 ff, 222, 244

Parabolic equation, 6
parametric representation of C!#) charac-
teristics, 68
particle trajectories and characteristic
rays, 185
perfect gas, 58
perpendicular shock, 247
piston,
boundary conditions in magneto-
hydrodynamics, 260
motion in a tube, 73
problem, 140
problem in magnetohydrodynamics,
259 ff
plane,
interaction problem, 278 ff
shock, 215
wave, 200
plane flow, reducible, 299
plastic deformation, 76
point transformation, 347
polarised electro-magnetic wave, 55
positive definite, 31, 323, 324
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potential,
functions, 351
vector, 50, 196
power series solution, 10 ff
pressure,
magnetic, 176, 204, 210, 297, 319
total, 176, 319
propagation,
of discontinuities along characteristics,
100 ff
of weak hydromagnetic discontinuities,
189 ff
pure gas,
limits, 243 ff
rarefaction wave, 269
shock, 240, 242
wave, 212
purely transverse magnetohydrodyna-
mic flow, 201

Quadratic form, 323, 324
quadratic Hamiltonian, 45
quasi-linear equations, 3, 29, 32

Range of influence, 9
Rankine-Hugoniot relation,
139, 241, 248, 327 ff

and entropy condition, 124
generalised, 114, 116, 119
in magnetohydrodynamics, 217
variational form, 151
rarefaction,
fast, 269
maximum, 210, 268
rarefaction wave,
centred, 134, 262, 345
complete, 209, 210
fast and slow, 209, 268
maximum, 210, 268, 269
slow, 266 ff
ray, 41, 42, 154
fast, 185, 186
optics, 40
propagation of weak discontinuity,
153
slow, 185, 186
transverse, 185
tube, 157
velocity, 42, 43, 50
reality condition (R), 227
reducible equation, 79
region %, 102
region %, 106

114, 120,
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resolution of an initial discontinuity,
276 ff
Riemann initial value problem, 134, 135
Riemann invariant, 69, 72, 75, 85, 105
change across k-shock, 133
generalised kth, 85, 87, 88, 93
in magnetohydrodynamics, 199, 207,
208, 259, 299, 303
magnetie, 207
non-existence of direct generalisation,
86
Riemann’s problem in magnetohydro-
dynamics, 276 ff
right eigenvector, 87, 92, 325
rotational,
interaction problem, 289 ff
transform, 320

Secular equation in crystal optics, 53
semi-linear equation, 3, 32
shear flow discontinuity, 60, 253, 275
shock, 216
and evolutionary condition, 226 ff
development of, 105
double layer switch-on switch-off, 258
entropy increase across, 328
fast types (1), (2), 229, 230, 331, 332
fitting, 148
general relations, 130 ff
genuine, 128, 222
k-genuine, 13}
perpendicular, 247
polar, 311
slow types (1), (2), 235, 331, 332
speed and characteristic speeds, 132
tube, 140
wave, 114, 115
simple wave,
adjacent to constant state, 71, 90
centred, 73, 91, 132
gas, 334
generalised, 86
hydromagnetic one-dimensional, 202 ff,
337, 345
hydromagnetic three-dimensional, 199,
200
singly simple wave, 201
skew-symmetric matrix, 322
slow disturbance, matrix representation,
340
slow shock, 217, 218, 219 ff, 224, 234 ff,
260, 265, 270, 314, 336 ff
0° limit, 247

INDEX

slow shock, dependence on parameters,
237 ff
90° limit, 249
type (1), 235
type (2), 235
slow simple wave, 203, 210, 212
slow wave, 173, 182, 184, 186, 205, 208,
295, 304, 340
forward facing, 188
front emerging from sphere, 183
solitary wave, 28
solution,
basic, 148, 153, 190, 191
generalised, 28
genuine, 119
physically relevant, 124
sound wave, 60
space-like, 15, 36, 94, 95
space-time scale in magnetohydro-
dynamics, 167
spatial discontinuity, 186, 187, 293 ff
stability, hydromagnetic, 320
steady-state condition, 150, 190, 191
stress tensor, hydrodynamie, 57, 169
string, non-linear, 74
sub-fast flow, 223, 231
sub-slow flow, 223, 236
subsonic, 96
summation convention, 34
super-Alfvénic flow, 242
super-fast flow, 223, 231
supersonic flow,
characteristics, 79
steady, 76, 77
super-slow flow, 223, 236
surfaces of normal velocity, 179
switch-off shock, 238, 247, 257
switch-off simple wave, 209, 212
switch-on shock, 238, 240, 241, 242, 257,
275, 337
switch-on simple wave, 212
switch-on slow wave, 272
Sylvester’s law of inertia, 324
symmetric,
difference quotients, 148
hyperbolic equations, 153
hyperbolic equations of magneto-
hydrodynamics, 173
matrix, 322
symmetry preserving transformation, 31

Tangent hyperplane, 36
test function, 117
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thermal conductivity, 58, 169
thermodynamic equation, 169
thermodynamical relation, 220, 328
time-like, 17, 86, 94, 95
torus, 319
long and short paths, 319
twisted, 320
totally hyperbolic, 94
transform,
involutary, 349
Legendre, 349 ff
point and contact, 347 ff
transmission line,
characteristics, 81
electric, 81
transverse,
disturbance,
341
hydromagnetic wave, 109, 338
magnetic field jump, 224
shock, 218, 249, 260, 338
simple wave, 203, 212
speed, variation with direction, 178
velocity jump in magnetohydro-
dynamics, 227, 241
wave, 173, 175, 181, 184, 217, 223, 341
wave, exceptional nature, 213, 345
Tricomi equation, 6
types (1), (2) shocks. 229 ff

matrix representation,

Undistorted wave propagation, 84
uniqueness of domain of dependence, 24
unit matrix, 322

Variation of scale factor along a ray,
154, 156, 159
variational equations, 151
variations, 150
vector,
potential, 50, 196
row and column, 321
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velocity profile, steepening of, 106
viscosity,
coefficient, 58
method, 123
term in parabolic equation, 123
term in weak solutions, 122, 123

Wave, 3

Alfvén, 176

centred simple, 73
entropy, 173
expansion, 73

fast, 173

kth simple, 87, 88
magnetohydrodynamic, 174
plane, 200

shallow water, 63, 80
simple, 71, 72, 90, 334
slow, 173

sound, 60

transverse, 173

zero phase, 129

wave front, 4, 40, 43, 44

diagram, 177 ff

discontinuity jump across, 5, 102, 107

normal, 37, 38

propagation of discontinuities along,
100 ff

shock, 239

speed relative to fluid, 172

velocity, 38

weak discontinuity, 260

hydromagnetic, 189 ff
in steady flows, 293 ff

weak solution, 119

non-uniqueness, 119 ff
selection of physically relevant solu-
tion, 122

weakly evolutionary, 258, 261



Chis book represents an atlempl to present the basic mathematics of nor-linear
wave propagation in a sysiematic manner and to display it against the back-
ground of madern theoretical physics Sh ' Rart & of the book, basic ideas are
developed and examples from several branches of physics are used to illustrate

the application of these ideas in diverse situations. S is hoped that in this mar-

ner the power of these methods may be indicated more diréotly and application

to ather branches encouraged "Rart S of the book is a study of these topics of
megnelohydrodynamics which permit exacl analysis meatking use of these methods
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